
StarOfficeTM 6.0 Office Suite
A SunTM ONE Software Offering

Basic Programmer's Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A. 650-960-1300

Part No. 817-1826-10
July 2003, Revision A

Copyrights and Trademarks
Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054. , U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without limitation, these

intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S.

and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and decompilation. No part of the product or of this document

may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

This product is based in part on the work of the Independent JPEG Group and The FreeType Project.

Portions Copyright 2000 SuSE, Inc. Word for Word Copyright © 1996 Inso Corp. International CorrectSpell spelling correction system Copyright © 1995 by Lernout & Hauspie Speech

Products N.V. All rights reserved.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, StarOffice, the Butterfly logo, the Solaris logo, and the StarOffice logo are trademarks or registered trademarks of Sun Microsystems,

Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd. Screen Beans and Screen Beans clipart characters are registered

trademarks of A Bit Better Corporation.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF

MERCHANTABILITY, FITNESS FOR FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE

HELD TO BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans ce produit. En particulier, et sans la limitation, ces droits de propriété intellectuels

peuvent inclure un ou plus des brevets américains énumérés à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats -

Unis et les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce produit

ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Ce produit repose en partie sur le travail de l’Independent JPEG Group et de The FreeType Project.

Portions Copyright 2000 SuSE, Inc. Word for Word Copyright © 1996 Inso Corp. Système de correction orthographique International CorrectSpell Copyright © 1995 de Lernout & Hauspie

Speech Products N.V. Tous droits réservés.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, StarOffice, le logo Butterfly, le logo Solaris et le logo StarOffice sont des marques de fabrique ou des marques déposées de Sun

Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

Les Screen Beans et les objets graphiques prédessinés Screen Beans sont des marques déposées de A Bit Better Corporation.

Acquisitions fédérales : logiciel commercial ; les utilisateurs gouvernementaux sont soumis aux conditions générales standard de la licence.

LA DOCUMENTATION est fournie « TELLE QUELLE » et TOUTES LES CONDITIONS, REPRÉSENTATIONS ET GARANTIES EXPRESSES OU TACITES, Y COMPRIS TOUTE GARANTIE

TACITE CONCERNANT LA QUALITÉ MARCHANDE, L'APTITUDE À UN USAGE PARTICULIER OU LA NON-VIOLATION DE DROITS DE TIERS SERONT REJETÉES, EXCEPTÉ

DANS LE CAS OÙ L'EXCLUSION OU LA LIMITATION DE TELLES GARANTIES NE SERAIT PAS AUTORISÉE PAR LA LÉGISLATION EN VIGUEUR.

Contents

1 Introduction 9

About StarOffice Basic 9

Intended Users of StarOffice Basic 10

Use of StarOffice Basic 10

Structure of This Guide 10

More Information 11

2 The Language of StarOffice Basic 13

An Overview of a StarOffice Basic Program 13

Program Lines 13

Comments 14

Markers 14

Working With Variables 16

Implicit Variable Declaration 16

Explicit Variable Declaration 16

Strings 17

From a Set of ASCII Characters to Unicode 17

String Variables 19

Specification of Explicit Strings 19

Numbers 20

Integer Variables 20

Long Integer Variables 20

Single Variables 21

Double Variables 21

Currency Variables 21

Specification of Explicit Numbers 21

True and False 24

Boolean Variables 24

Date and Time Details 24

Date Variables 24

Data Fields 25

 3

Simple Arrays 25

Specified Value for Start Index 26

Multi-Dimensional Data Fields 26

Dynamic Changes in the Dimensions of Data Fields 26

Scope and Life Span of Variables 27

Local Variables 27

Public Domain Variables 29

Global Variables 29

Private Variables 30

Constants 31

Operators 31

Mathematical Operators 31

Logical Operators 31

Comparison Operators 32

Branching 32

If...Then...Else 32

Select...Case 33

Loops 34

For...Next 34

Do...Loop 36

Programming Example: Sorting With Embedded Loops 36

Procedures and Functions 38

Procedures 38

Functions 38

Terminating Procedures and Functions Prematurely 39

Passing Parameters 40

Optional Parameters 41

Error Handling 42

The On Error Instruction 42

The Resume Command 42

Queries Regarding Error Information 43

Tips for Structured Error Handling 43

3 The Runtime Library of StarOffice Basic 45

Conversion Functions 45

Implicit and Explicit Type Conversions 45

Checking the Content of Variables 47

Strings 49

Working with Sets of Characters 49

Accessing Parts of a String 49

Search and Replace 50

4 StarOffice™ 6.0 Basic Programmer's Guide

Formatting Strings 51

Date and Time 52

Specification of Date and Time Details within the Program Code 52

Extracting Date and Time Details 53

Retrieving System Date and Time 54

Files and directories 54

Administering Files 55

Writing and Reading Text Files 59

Message and Input Boxes 60

Displaying Messages 60

Input Box For Querying Simple Strings 62

Other functions 62

Beep 62

Shell 63

Wait 63

Environ 63

4 Introduction to the StarOffice API 65

Universal Network Objects (UNO) 65

Properties and Methods 66

Properties 66

Methods 67

Module, Services and Interfaces 67

Tools for Working with UNO 68

The supportsService Method 68

Debug Properties 68

API Reference 69

An Overview of a Few Central Interfaces 69

Creating Context-Dependent Objects 69

Named Access to Subordinate Objects 70

Index-Based Access to Subordinate Objects 71

Iterative Access to Subordinate Objects 72

5 Working with StarOffice Documents 73

The StarDesktop 73

Basic Information about Documents in StarOffice 74

Creating, Opening and Importing Documents 75

Document Objects 77

Templates 82

Details about various formatting options 83

Contents 5

6 Text Documents 85

The Structure of Text Documents 85

Paragraphs and Paragraph Portions 86

Editing Text Documents 94

The TextCursor 94

Searching for Text Portions 98

Replacing Text Portions 101

Text Documents: More than Just Text 102

Tables 103

Text Frames 107

Text Fields 110

Bookmarks 114

7 Spreadsheet Documents 115

The Structure of Table-Based Documents (Spreadsheets) 115

Spreadsheets 115

Rows and Columns 117

Cells 119

Formatting 124

Editing Spreadsheet Documents Efficiently 134

Cell Ranges 134

Searching and Replacing Cell Contents 136

The Structure of Drawings 137

Pages 137

Elementary Properties of Drawing Objects 139

An Overview of Various Drawing Objects 149

Editing Drawing Objects 156

Grouping Objects 156

Rotating and Shearing Drawing Objects 157

Searching and Replacing 158

Presentations 159

Working With Presentations 159

8 Diagrams (Charts) 161

Using Diagrams in Spreadsheets 161

The Structure of Diagrams 162

The Individual Elements of a Diagram 162

Example 168

3D Diagrams 169

Stacked Diagrams 169

Diagram Types 169

6 StarOffice™ 6.0 Basic Programmer's Guide

Line Diagrams 169

Area Diagrams 170

Bar Diagrams 170

Pie Diagrams 170

9 Database Access 171

SQL: a Query Language 171

Types of Database Access 172

Data Sources 172

Queries 173

Links with Database Forms 175

Database Access 176

Iteration of Tables 176

Type-Specific Methods for Retrieving Values 178

The ResultSet Variants 178

Methods for Navigation in ResultSets 179

Modifying Data Records 180

10 Dialogs 181

Working With Dialogs 181

Creating Dialogs 181

Closing Dialogs 182

Access to Individual Control Elements 183

Working With the Model of Dialogs and Control Elements 184

Properties 184

Name and Title 184

Position and Size 184

Focus and Tabulator Sequence 185

Multi-Page Dialogs 185

Events 187

Parameters 189

Mouse Events 190

Keyboard Events 191

Focus Events 192

Control Element-Specific Events 193

Dialog Control Elements in Detail 193

Buttons 194

Option Buttons 195

Checkboxes 195

Text Fields 196

List Boxes 197

Contents 7

11 Forms 199

Working with Forms 199

Determining Object Forms 200

The Three Aspects of a Control Element Form 200

Accessing the Model of Control Element Forms 201

Accessing the View of Control Element Forms 202

Accessing the Shape Object of Control Element Forms 203

Control Element Forms in Detail 204

Buttons 204

Option Buttons 205

Checkboxes 206

Text Fields 207

List Boxes 208

Database Forms 209

Tables 209

12 Appendix 211

VBA Migrations Tips 211

StarOffice 5.x Migration Tips 211

8 StarOffice™ 6.0 Basic Programmer's Guide

1 Introduction
This guide provides an introduction to programming with StarOffice 6.0 Basic and indicates the
possible applications provided by using StarOffice Basic in StarOffice. To get the most out of this
book, you should be familiar with other programming languages.

 Extensive examples are provided to help you quickly develop your own StarOffice Basic
programs.

A number of migration tips for Microsoft Visual Basic programmers or those who have worked with earlier
versions of StarOffice Basic are provided throughout the guide. These are indicated by a small symbol at
the edge of the page. The Appendix of this guide contains an index of all of the migration tips so that you
can quickly navigate to the tip that you want to read.

About StarOffice Basic
The StarOffice Basic programming language has been developed especially for StarOffice and is
firmly integrated in the Office package.

As the name suggests, StarOffice Basic is a programming language from the Basic family. Anyone
who has previously worked with other Basic languages – in particular with Visual Basic or Visual
Basic for Applications (VBA) from Microsoft – will quickly become accustomed to StarOffice Basic.
Large sections of the basic constructs of StarOffice Basic are compatible with Visual Basic.

The StarOffice Basic programming language can be divided into four components:

 The language of StarOffice Basic: Defines the elementary linguistic constructs, for example, for
variable declarations, loops, and functions.

 The runtime library: Provides standard functions which have no direct reference to StarOffice,
for example, functions for editing numbers, strings, date values, and files.

 The StarOffice API (Application programming Interface): Permits access to StarOffice
documents and allows these to be created, saved, modified, and printed.

 The Dialog Editor: Creates personal dialog windows and provides scope for the adding of
control elements and event handlers.

Compatibility between StarOffice Basic and VBA relates to the StarOffice Basic language as well as the
runtime library. The StarOffice API and the Dialog Editor are not compatible with VBA (standardizing these
interfaces would have made many of the concepts provided in StarOffice impossible).

9

CHAPTER 1

Intended Users of StarOffice Basic
The scope of application for StarOffice Basic begins where the standard functions of StarOffice end.
Routine tasks can therefore be automated in StarOffice Basic, links can be made to other programs
– for example to a database server – and complex activities can be performed at the press of a
button using predefined scripts.

StarOffice Basic offers complete access to all StarOffice functions, supports all functions, modifies
document types, and provides options for creating personal dialog windows.

Use of StarOffice Basic
StarOffice Basic can be used by any StarOffice user without any additional programs or aids.
Even in the standard installation, StarOffice Basic has all the components needed to create its own
Basic macros, including:

 The integrated development environment (IDE) which provides an editor for creating and
testing macros.

 The interpreter which is needed to run StarOffice Basic macros.

 The interfaces to various StarOffice applications, which allow for direct access to Office
documents.

Structure of This Guide
The first three chapters introduce readers to StarOffice Basic:

 Chapter 2: The Language of StarOffice Basic

 Chapter 3: The Runtime Library of StarOffice Basic

 Chapter 4: Introduction to the StarOffice API

These chapters provide an overview of StarOffice Basic and should be read by anyone who
intends to write StarOffice Basic programs.

The remaining chapters describe the individual components of the StarOffice API in more detail
and can be read selectively as required:

 Chapter 5: Working with StarOffice Documents

 Chapter 6: Text Documents

 Chapter 7: Spreadsheet Documents

 Chapter 7: Drawings and Presentations

 Chapter 8: Diagrams (Charts)

 Chapter 9: Database Access

 Chapter 10: Dialogs

 Chapter 11: Forms

10 StarOffice™ 6.0 Basic Programmer's Guide

More Information
The components of the StarOffice API that are discussed in this guide were selected based on their
practical benefits for the StarOffice Basic programmer. In general, only parts of the interfaces are
discussed. For a more detailed picture, see the API reference which is available on the Internet at:

http://api.openoffice.org/common/ref/com/sun/star/module-ix.html

The Developer's Guide describes the StarOffice API in more detail than this guide, but is primarily
intended for Java and C++ programmers. Anyone who is already familiar with StarOffice Basic
programming can find additional information in the Developer's Guide on StarOffice Basic and
StarOffice programming. You can download the Developer's Guide on the Internet from:

http://api.openoffice.org/DevelopersGuide/DevelopersGuide.html

Programmers who want to work directly with Java or C++ rather than StarOffice Basic should
consult the StarOffice Developer's Guide instead of this guide. StarOffice programming with Java
or C++ is a considerably more complex process than programming with StarOffice Basic.

Chapter 1 Introduction 11

12 StarOffice™ 6.0 Basic Programmer's Guide

2 The Language of StarOffice Basic
StarOffice Basic belongs to the family of Basic languages. Many parts of StarOffice Basic are
identical to Microsoft Visual Basic for Applications and Microsoft Visual Basic. Anyone who has
already worked with these languages can quickly become accustomed to StarOffice Basic.

Programmers of other languages – such as Java, C++, or Delphi – should also find it easy to
familiarize themselves with StarOffice Basic. StarOffice Basic is a fully-developed procedural

programming language and no longer uses rudimentary control structures, such as GoTo and

GoSub.

You can also benefit from the advantages of object-oriented programming since an interface in
StarOffice Basic enables you to use external object libraries. The entire StarOffice API is based on
these interfaces, which are described in more detail in the following chapters of this document.

This chapter provides an overview of the key elements and constructs of the StarOffice Basic
language, as well as the framework in which applications and libraries are oriented to StarOffice
Basic.

An Overview of a StarOffice Basic Program
StarOffice Basic is an interpreter language. Unlike C++ or Turbo Pascal, the StarOffice compiler
does not create executable or self-extracting files that are capable of running automatically. Instead,
you can execute a StarOffice Basic program by pressing a button. The code is first checked for
obvious errors and then executed line by line.

Program Lines
The Basic interpreter's line-oriented execution produces one of the key differences between Basic
and other programming languages. Whereas the position of hard line breaks in the source code of
Java, C++, or Delphi programs is irrelevant, each line in a Basic program forms a self-contained
unit. Function calls, mathematical expressions, and other linguistic elements, such as function and
loop headers, must be completed on the same line that they begin on.

If there is not enough space, or if this results in long lines, then several lines can be linked together

by adding underscores _. The following example shows how four lines of a mathematical
expression can be linked:

LongExpression = (Expression1 * Expression2) + _

(Expression3 * Expression4) + _

(Expression5 * Expression6) + _

13

CHAPTER 2

(Expression7 * Expression8)

The underscore must always be the last character in a linked line and cannot be followed by a
space or a tab, otherwise the code generates an error.

In addition to linking individual lines, StarOffice Basic, you can use colons to divide one line into
several sections so that there is enough space for several expressions. The assignments

a = 1

a = a + 1

a = a + 1

can be written as follows:

a = 1 : a = a + 1 : a = a + 1

Comments
In addition to the program code to be executed, a StarOffice Basic program can also contain
comments that explain the individual parts of the program and provide important information that
can be helpful at a later point.

StarOffice Basic provides two methods for inserting comments in the program code:

 All characters that follow an apostrophe are treated as comments:

Dim A ' This is a comment for variable A

 The keyword Rem, followed by the comment:

Rem This comment is introduced by the keyword Rem.

A comment usually includes all characters up to the end of the line. StarOffice Basic then interprets
the following line as a regular instruction again. If comments cover several lines, each line must be
identified as a comment:

Dim B ' This comment for variable B is relatively long

' and stretches over several lines. The

' comment character must therefore be repeated

' in each line.

Markers
A StarOffice Basic program can contain dozens, hundreds, or even thousands of markers, which are
names for variables, constants, functions, and so on.
When you select a name for a marker, the following rules apply:

 Markers can only contain Latin letters, numbers, and underscores (_).

 The first character of a marker must be a letter or an underscore.

 Markers cannot contain special characters, such as ä â î ß.

14 StarOffice™ 6.0 Basic Programmer's Guide

 The maximum length of a marker is 255 characters.

 No distinction is made between uppercase and lowercase characters. The OneTestVariable

marker, for example, defines the same variable as onetestVariable and ONETESTVARIABLE.

There is, however, one exception to this rule: a distinction is made between uppercase and
lowercase characters for UNO-API constants. More information about UNO is presented in
Chapter 4.)

The rules for constructing markers are different in StarOffice Basic than in VBA. Dor example, StarOffice
Basic does not allow special characters in markers, since they can cause problems in international
projects.

Here are a few examples of correct and incorrect markers:

Surname ' Correct

Surname5 ' Correct (number 5 is not the first digit)

First Name ' Incorrect (spaces are not permitted)

DéjàVu ' Incorrect (letters such as é, à are not permitted)

5Surnames ' Incorrect (the first character must not be a number)

First,Name ' Incorrect (commas and full stops are not permitted)

Chapter 2 The Language of StarOffice Basic 15

Working With Variables

Implicit Variable Declaration
Basic languages are designed to be easy to use. As a result, StarOffice Basic enables the creation of
a variable through simple usage and without an explicit declaration. In other words, a variable
exists from the moment that you include it in your code. Depending on the variables that are
already present, the following example declares up to three new variables:

a = b + c

Declaring variables implicitly is not good programming practice because it can result in the
inadvertent introduction of a new variable through, for example, a typing error. Instead of
producing an error message, the interpreter initializes the typing error as a new variable with a
value of 0. It can be very difficult to locate errors of this kind in your code.

Explicit Variable Declaration
To prevent errors caused by an implicit declaration of variables, StarOffice Basic provides a switch
called:

Option Explicit

This must be listed in the first program line of each module and ensures that an error message is

issued if one of the variables used is not declared. The Option Explicit switch should be
included in all Basic modules.

In its simplest form, the command for an explicit declaration of a variable is as follows:

Dim MyVar

This example declares a variable with the name MyVar and the type variant. A variant is a
universal variable that can record all conceivable values, including strings, whole numbers,
floating point figures, and Boolean values. Here are a few examples of Variant variables:

MyVar = "Hello World" ' Assignment of a string

MyVar = 1 ' Assignment of a whole number

MyVar = 1.0 ' Assignment of a floating point number

MyVar = True ' Assignment of a Boolean value

The variables declared in the previous example can even be used for different variable types in the
same program. Although this provides considerable flexibility, it is best to restrict a variable to one
variable type. When StarOffice Basic encounters an incorrectly defined variable type in a particular
context, an error message is generated.

Use the following style when you make a type-bound variable declaration:

Dim MyVar As Integer ' Declaration of a variable of the integer type

The variable is declared as an integer type and can record whole number values. You can also use
the following style to declare an integer type variable:

16 StarOffice™ 6.0 Basic Programmer's Guide

Dim MyVar% ' Declaration of a variable of the integer type

The Dim instruction can record several variable declarations:

Dim MyVar1, MyVar2

If you want to assign the variables to a permanent type, you must make separate assignments for
each variable:

Dim MyVar1 As Integer, MyVar2 As Integer

If you do not declare the type for a variable, StarOffice Basic assigns the variable a variant type. For

example, in the following variable declaration, MyVar1 becomes a variant and MyVar2 becomes an
integer:

Dim MyVar1, MyVar2 As Integer

The following sections list the variable types that are available in StarOffice Basic and describe how
they can be used and declared.

Strings
Strings, together with numbers, form the most important basic types of StarOffice Basic. A string
consists of a sequence of consecutive individual characters. The computer saves the strings
internally as a sequence of numbers where each number represents one specific character.

From a Set of ASCII Characters to Unicode
Character sets match characters in a string with a corresponding code (numbers and characters) in
a table that describes how the computer is to display the string.

The ASCII Character Set

The ASCII character set is a set of codes that represent numbers, characters, and special symbols by
one byte. The 0 to 127 ASCII codes correspond to the alphabet and to common symbols (such as
periods, brackets, and commas), as well as some special screen and printer control codes. The
ASCII character set is commonly used as a standard format for transferring text data between
computers.

However, this character set does not include a range of special characters used in Europe, such as
â, ä and î, as well as other character formats, such as the Cyrillic alphabet.

The ANSI Character Set

Microsoft based its Windows product on the American National Standards Institute (ANSI)
character set, which was gradually extended to include characters that are missing from the ASCII
character set.

Chapter 2 The Language of StarOffice Basic 17

Code Pages

The ISO 8859 character sets provide an international standard. The first 128 characters of the ISO
character set correspond to the ASCII character set. The ISO standard introduces new character sets
(code pages) so that more languages can be correctly displayed. However, as a result, the same
character value can represent different characters in different languages.

Unicode

Unicode increases the length of a character to four bytes and combines different character sets to
create a standard to depict as many of the world’s languages as possible. Version 2.0 of Unicode is
now supported by many programs – including StarOffice and StarOffice Basic.

18 StarOffice™ 6.0 Basic Programmer's Guide

String Variables
StarOffice Basic saves strings as string variables in Unicode. A string variable can store up to 65535
characters. Internally, StarOffice Basic saves the associated Unicode value for every character. The
working memory needed for a string variable depends on the length of the string.

Example declaration of a string variable:

Dim Variable As String

You can also write this declaration as:

Dim Variable$

When porting VBA applications, ensure that the maximum allowed string length in StarOffice Basic is
observed (65535 characters).

Specification of Explicit Strings
To assign an explicit string to a string variable, enclose the string in quotation marks (").

Dim MyString As String

MyString = " This is a test"

To split a string across two lines, add a plus sign at the end of the first line:

Dim MyString As String

MyString = "This string is so long that it" + _

"has been split over two lines."

To include a quotation mark (") in a string, enter it twice at the relevant point:

Dim MyString As String

MyString = "a ""-quotation mark." ' produces a "-quotation mark

Chapter 2 The Language of StarOffice Basic 19

Numbers
StarOffice Basic supports five basic types for processing numbers:

 Integer

 Long Integer

 Float

 Double

 Currency

Integer Variables
Integer variables can store any whole number between -32768 and 32767. An integer variable can

take up to two bytes of memory. The type declaration symbol for an integer variable is %.
Calculations that use integer variables are very fast and are particularly useful for loop counters. If
you assign a floating point number to an integer variable, the number is rounded up or down to
the next whole number.

Example declarations for integer variables:

Dim Variable As Integer

Dim Variable%

Long Integer Variables
Long integer variables can store any whole number between 2147483648 and 2147483647. A long
integer variable can takes up to four bytes of memory. The type declaration symbol for a long

integer is &. Calculations with long integer variables are very fast and are particularly useful for
loop counters. If you assign a floating point number to a long integer variable, the number is
rounded up or down to the next whole number.

Example declarations for long integer variables:

Dim Variable as Long

Dim Variable&

20 StarOffice™ 6.0 Basic Programmer's Guide

Single Variables
Single variables can store any positive or negative floating point number between 3.402823 x 1038

and 1.401298 x 10-45. A single variable can take up to four bytes of memory. The type declaration

symbol for a single variable is!.

Originally, single variables were used to reduce the computing time required for the more precise
double variables. However, these speed considerations no longer apply, reducing the need for
single variables.

Example declarations for single variables:

Dim Variable as Single

Dim Variable!

Double Variables
Double variables can store any positive or negative floating point numbers between
1.79769313486232 x 10308 and 4.94065645841247 x 10-324. A double variable can take up to eight bytes

of memory. Double variables are suitable for precise calculations. The type declaration symbol is #.

Example declarations of double variables:

Dim Variable As Double

Dim Variable#

Currency Variables
Currency variables differ from the other variable types by the way they handle values. The decimal
point is fixed and is followed by four decimal places. The variable can contain up to 15 numbers
before the decimal point. A currency variable can store any value between –922337203685477.5808
and +922337203685477.5807 and takes up to eight bytes of memory. The type declaration symbol

for a currency variable is @.

Currency variables are mostly intended for business calculations that yield unforeseeable rounding
errors due to the use of floating point numbers.

Example declarations of currency variables:

Dim Variable As Currency

Dim Variable@

Specification of Explicit Numbers
Numbers can be presented in several ways, for example, in decimal format or in scientific notation,
or even with a different base than the decimal system. The following rules apply to numerical
characters in StarOffice Basic:

Chapter 2 The Language of StarOffice Basic 21

Whole Numbers

The simplest method is to work with whole numbers. They are listed in the source text without a
comma separating the thousand figure:

Dim A As Integer

Dim B As Float

A = 1210

B = 2438

The numbers can be preceded by both a plus (+) or minus (-) sign (with or without a space in
between):

Dim A As Integer

Dim B As Float

A = + 121

B = - 243

Decimal Numbers

When you type a decimal number, use a period (.) as the decimal point. This rule ensures that
source texts can be transferred from one country to another without conversion.

Dim A As Integer

Dim B As Integer

Dim C As Float

A = 1223.53 ' is rounded

B = - 23446.46 ' is rounded

C = + 3532.76323

You can also use plus (+) or minus (-) signs as prefixes for decimal numbers (again with or without
spaces).

If a decimal number is assigned to an integer variable, StarOffice Basic rounds the figure up or
down.

22 StarOffice™ 6.0 Basic Programmer's Guide

Exponential Writing Style

StarOffice Basic allows numbers to be specified in the exponential writing style, for example, you can
write 1.5e-10 for the number 1.5 × 10-10 (0.00000000015). The letter "e" can be lowercase or uppercase
with or without a plus sign (+) as a prefix.

Here are a few correct and incorrect examples of numbers in exponential format:

Dim A As Double

A = 1.43E2 ' Correct

A = + 1.43E2 ' Correct (space between plus and basic number)

A = - 1.43E2 ' Correct (space between minus and basic number)

A = 1.43E-2 ' Correct (negative exponent)

A = 1.43E -2 ' Incorrect (spaces not permitted within the number)

A = 1,43E-2 ' Incorrect (commas not permitted as decimal points)

A = 1.43E2.2 ' Incorrect (exponent must be a whole number)

Note that in the first and third incorrect examples that no error message is generated even though
the variables return incorrect values. The expression

A = 1.43E -2

is interpreted as 1.43 minus 2, which corresponds to the value –0.57. However, the value 1.43 * 102

(corresponding to 0.0143) was the intended value. With the value

A = 1.43E2.2

StarOffice Basic ignores the part of the exponent after the decimal point and interprets the expression as

A = 1.43E2

Hexadecimal Values

In the hexadecimal system (base 16 system), a 2-digit number corresponds to precisely one byte.
This allows numbers to be handled in a manner which more closely reflects machine architecture.
In the hexadecimal system, the numbers 0 to 9 and the letters A to F are used as numbers. An A
stands for the decimal number 10, while the letter F represents the decimal number 15. StarOffice

Basic lets you use whole numbered hexadecimal values, so long as they are preceded by &H.

Dim A As Long

A = &HFF ' Hexadecimal value FF, corresponds to the decimal value 255

A = &H10 ' Hexadecimal value 10, corresponds to the decimal value 16

Octal Values

StarOffice Basic also understands the octal system (base 8 system), which uses the numbers 0 to 7.

You must use whole numbers that are preceded by &O.

Dim A As Long

Chapter 2 The Language of StarOffice Basic 23

A = &O77 ' Octal value 77, corresponds to the decimal value 63

A = &O10 ' Octal value 10, corresponds to the decimal value 8

True and False

Boolean Variables
Boolean variables can only contain one of two values: True or False. They are suitable for binary
specifications that can only adopt one of two statuses. A Boolean value is saved internally as a two-

byte integer value, where 0 corresponds to the False and any other value to True. There is no
type declaration symbol for Boolean variables. The declaration can only be made using the
supplement As Boolean.

Example declaration of a Boolean variable:

Dim Variable As Boolean

Date and Time Details

Date Variables
Date variables can contain date and time values. When saving date values, StarOffice Basic uses an
internal format that permits comparisons and mathematical operations on date and time values.
There is no type declaration symbol for date variables. The declaration can only be made using the
supplement As Date.

Example declaration of a date variable:

Dim Variable As Date

24 StarOffice™ 6.0 Basic Programmer's Guide

Data Fields
In addition to simple variables (scalars), StarOffice Basic also supports data fields (arrays). A data
field contains several variables, which are addressed through an index.

Simple Arrays
An array declaration is similar to that of a simple variable declaration. However, unlike the
variable declaration, the array name is followed by brackets which contain the specifications for the
number of elements. The expression

Dim MyArray(3)

declares an array that has four variables of the variant data type, namely MyArray(0),

MyArray(1), MyArray(2) and MyArray(3).

You can also declare type-specific variables in an array. For example, the following line declares an
array with four integer variables:

Dim MyInteger(3) As Integer

In the previous examples, the index for the array always begins with the standard start value of
zero. As an alternative, a validity range with start and end values can be specified for the data field
declaration. The following example declares a data field that has six integer values and which can be
addressed using the indexes 5 to 10:

Dim MyInteger(5 To 10)

The indexes do not need to be positive values. The following example also shows a correct
declaration, but with negative data field limits:

Dim MyInteger(-10 To -5)

It declares an integer data field with 6 values that can be addressed using the indexes -10 to -5.

There are three limits that you must observe when you define data field indexes:

 The smallest possible index is -32768.

 The largest possible index is 32767.

 The maximum number of elements (within a data field dimension) is 16368.

Other limit values sometimes apply for data field indexes in VBA. The same also applies to the maximum
number of elements possible per dimension. The values valid there can be found in the relevant VBA
documentation.

Chapter 2 The Language of StarOffice Basic 25

Specified Value for Start Index
The start index of a data field usually begins with the value 0. Alternatively, you can change the
start index for all data field declarations to the value 1 by using the call:

Option Base 1

The call must be included in the header of a module if you want it to apply to all array declarations
in the module. However, this call does not affect the UNO sequences that are defined through the
StarOffice API whose index always begins with 0. To improve clarity, you should avoid using
Option Base 1.

The number of elements in an array is not affected if you use Option Base 1, only the start index
changes. The declaration

Option Base 1

' ...

Dim MyInteger(3)

creates 4 integer variables which can be described with the expressions MyInteger(1),

MyInteger(2), MyInteger(3) and MyInteger(4).

In StarOffice Basic, the expression Option Base 1 does not affect the number of elements in an array as it
does in VBA. It is, rather, the start index which moves in StarOffice Basic. While the declaration
MyInteger(3) creates three integer values in VBA with the indexes 1 to 3, the same declaration in
StarOffice Basic creates four integer values with the indexes 1 to 4.

Multi-Dimensional Data Fields
In addition to single dimensional data fields, StarOffice Basic also supports work with multi-
dimensional data fields. The corresponding dimensions are separated from one another by
commas. The example

Dim MyIntArray(5, 5)

defines an integer array with two dimensions, each with 6 indexes (can be addressed through the
indexes 0 to 5). The entire array can record a total of 6 × 6 = 36 integer values.

Although you can define hundreds of dimensions in StarOffice Basic Arrays; however, the amount
of available memory limits the number of dimensions you can have.

Dynamic Changes in the Dimensions of Data Fields
The previous examples are based on data fields of a specified dimension. You can also define
arrays in which the dimension of the data fields dynamically changes. For example, you can define
an array to contain all of the words in a text that begin with the letter A. As the number of these
words is initially unknown, you need to be able to subsequently change the field limits. To do this
in StarOffice Basic, use the following call:

ReDim MyArray(10)

26 StarOffice™ 6.0 Basic Programmer's Guide

Unlike VBA, where you can only dimension dynamic arrays by using Dim MyArray(), StarOffice Basic lets
you change both static and dynamic arrays using ReDim.

The following example changes the dimension of the initial array so that it can record 11 or 21
values:

Dim MyArray(4) As Integer ' Declaration with five elements

' ...

ReDim MyArray(10) As Integer ' Increase to 11 elements

' ...

ReDim MyArray(20) As Integer ' Increase to 21 elements

When you reset the dimensions of an array, you can use any of the options outlined in the previous
sections. This includes declaring multi-dimensional data fields and specifying explicit start and end
values. When the dimensions of the data field are changed, all contents are lost. If you want to keep

the original values, use the Preserve command:

Dim MyArray(10) As Integer ' Defining the initial

' dimensions

' ...

ReDim Preserve MyArray(20) As Integer ' Increase in

' data field, while

' retaining content

When you use Preserve, ensure that the number of dimensions and the type of variables remain
the same.

Unlike VBA, where only the upper limit of the last dimension of a data field can be changed through
Preserve, StarOffice Basic lets you change other dimensions as well.

If you use ReDim with Preserve, you must use the same data type as specified in the original data field
declaration.

Scope and Life Span of Variables
A variable in StarOffice Basic has a limited life span and a limited scope from which it can be read
and used in other program fragments. The amount of time that a variable is retained, as well as
where it can be accessed from, depends on its specified location and type.

Local Variables
Variable that are declared in a function or a procedure are called local variables:

Chapter 2 The Language of StarOffice Basic 27

Sub Test

Dim MyInteger As Integer

' ...

End Sub

Local variables only remain valid as long as the function or the procedure is executing, and then
are reset to zero. Each time the function is called, the values generated previously are not available.

To keep the previous values, you must define the variable as Static:

Sub Test

Static MyInteger As Integer

' ...

End Sub

Unlike VBA, StarOffice Basic ensures that the name of a local variable is not used simultaneously as a
global and a private variable in the module header. When you port a VBA application to StarOffice Basic,
you must change any duplicate variable names.

28 StarOffice™ 6.0 Basic Programmer's Guide

Public Domain Variables
Public domain variables are defined in the header section of a module by the keyword Dim. These
variables are available to all of the modules in their library:

Module A:

Dim A As Integer

Sub Test

Flip

Flop

End Sub

Sub Flip

A = A + 1

End Sub

Module B:

Sub Flop

A = A - 1

End Sub

The value of variable A is not changed by the Test function, but is increased by one in the Flip

function and decreased by one in the Flop function. Both of these changes to the variable are
global.

You can also use the keyword Public instead of Dim to declare a public domain variable:

Public A As Integer

A public domain variable is only available so long as the associated macro is executing and then
the variable is reset.

Global Variables
In terms of their function, global variables are similar to public domain variables, except that their
values are retained even after the associated macro has executed. Global variables are declared in

the header section of a module using the keyword Global:

Global A As Integer

Chapter 2 The Language of StarOffice Basic 29

Private Variables
Private variables are only available in the module in which they are defined. Use the keyword

Private to define the variable:

Private MyInteger As Integer

If several modules contain a Private variable with the same name, StarOffice Basic creates a

different variable for each occurrence of the name. In the following example, both module A and B

have a Private-variable called C. The Test function first sets the Private variable in module A

and then the Private variable in module B.

Module A:

Private C As Integer

Sub Test

SetModuleA ' Sets the variable C from module A

SetModuleB ' Sets the variable C from module B

ShowVarA ' Shows the variable C from module A (= 10)

ShowVarB ' Shows the variable C from module B (= 20)

End Sub

Sub SetmoduleeA

A = 10

End Sub

Sub ShowVarA

MsgBox C ' Shows the variable C from module A.

End Sub

Module B:

Private C As Integer

Sub SetModuleB

A = 20

End Sub

Sub ShowVarB

MsgBox C ' Shows the variable C from module B.

End Sub

30 StarOffice™ 6.0 Basic Programmer's Guide

Constants
In StarOffice Basic, use the keyword Const to declare a constant.

Const A = 10

You can also specify the constant type in the declaration:

Const B As Double = 10

Operators
StarOffice Basic understands common mathematical, logical, and comparison operators.

Mathematical Operators
Mathematical operators can be applied to all numbers types, whereas the + operator can also be
used to link strings.

+ Addition of numbers and date values, linking of strings

- Subtraction of numbers and date values

* Multiplication of numbers

/ Division of numbers

\ Division of numbers with a whole number result (rounded)

^ Raising the power of numbers

MOD module operation (calculation of the rest of a division)

Logical Operators
Logical operators allow you to link elements according to the rules of Boolean algebra. If the
operators are applied to Boolean values, the link provides the result required directly. If used in
conjunction with integer and long integer values, the linking is done at the bit level.

AND And linking

OR Or linking

XOR Exclusive or linking

NOT Negation

EQV Equivalent test (both parts True or False)

IMP Implication (if the first expression is true, then the second must also be true)

Chapter 2 The Language of StarOffice Basic 31

Comparison Operators
Comparison operators can be applied to all elementary variable types (numbers, date details,
strings, and Boolean values).

= Equality of numbers, date values and strings

<> Inequality of numbers, date values and strings

> Greater than check for numbers, date values and strings

>= Greater than or equal to check for numbers, date values and strings

< Less than check for numbers, date values and strings

<= Less than or equal to check for numbers, date values and strings

StarOffice Basic does not support the VBA Like comparison operator.

Branching
Use branching statements to restrict the execution of a code block until a particular condition is
satisfied.

If...Then...Else
The most common branching statement is the If statement as shown in the following example:

If A > 3 Then

B = 2

End If

The B = 2 assignment only occurs when value of variable A is greater than three. A variation of

the If statement is the If/Else clause:

If A > 3 Then

B = 2

Else

B = 0

End If

In this example, the variable B is assigned the value of 2 when A is greater than 3, otherwise B is
assigned the value of 0.

32 StarOffice™ 6.0 Basic Programmer's Guide

For more complex statements, you can cascade the If statement, for example:

If A = 0 Then

B = 0

ElseIf A < 3 Then

B = 1

Else

B = 2

End If

If the value of variable A equals zero, B is assigned the value 0. If A is less than 3 (but not equal to

zero), then B is assigned the value 1. In all other instances (that is, if A is greater than or equal to 3),

B is assigned the value 2.

Select...Case
The Select...Case instruction is an alternative to the cascaded If statement and is used when
you need to check a value against various conditions:

Select Case DayOfWeek

Case 1:

NameOfWeekday = "Sunday"

Case 2:

NameOfWeekday = "Monday"

Case 3:

NameOfWeekday = "Tuesday"

Case 4:

NameOfWeekday = "Wednesday"

Case 5:

NameOfWeekday = "Thursday"

Case 6:

NameOfWeekday = "Friday"

Case 7:

NameOfWeekday = "Saturday"

End Select

In this example, the name of a weekday corresponds to a number, so that the DayOfWeek variable

is assigned the value of 1 for Sunday, 2 for Monday value, and so on.

Chapter 2 The Language of StarOffice Basic 33

The Select command is not restricted to simple 1:1 assignments – you can also specify

comparison operators or lists of expressions in a Case branch. The following example lists the
most important syntax variants:

Select Case Var

Case 1 To 5

' ... Var is between the numbers 1 and 5

Case 6, 7, 8

' ... Var is 6, 7 or 8

Case Var > 8 And Var < 11

' ... Var is greater than 8 and less than 11

Case Else

' ... all other instances

End Select

Loops
A loop executes a code block for the number of passes that are specified. You can also have loops
with an undefined number of passes.

For...Next
The For...Next loop has a fixed number of passes. The loop counter defines the number of times
that the loop is to be executed. In the following example,

Dim I

For I = 1 To 10

' ... Inner part of loop

Next I

variable I is the loop counter, with an initial value of 1. The counter is incremented by 1 at the end
of each pass. When variable I equals 10, the loop stops.

34 StarOffice™ 6.0 Basic Programmer's Guide

If you want to increment the loop counter by a value other than 1 at the end of each pass, use the

the Step function:

Dim I

For I = 1 To 10 Step 0.5

' ... Inner part of loop

Next I

In the preceding example, the counter is increased by 0.5 at the end of each pass and the loop is
executed 19 times.

You can also use negative step values:

Dim I

For I = 10 To 1 Step -1

' ... Inner part of loop

Next I

In this example, the counter begins at 10 and is reduced by 1 at the end of each pass until the
counter is 1.

The Exit For instruction allows you to exit a For loop prematurely. In the following example, the
loop is terminated during the fifth pass:

Dim I

For I = 1 To 10

If I = 5 Then

Exit For

End If

' ... Inner part of loop

Next I

The For Each...Next loop variant in VBA is not supported in StarOffice Basic.

Chapter 2 The Language of StarOffice Basic 35

Do...Loop
The Do...Loop is not linked to a fixed number of passes. Instead, the Do...Loop is executed

until a certain condition is met. There are four variants of the Do...Loop (in the following

examples, A > 10 represents any condition):

1. The Do While...Loop variant

Do While A > 10

' ... loop body

Loop

checks whether the condition is still satisfied before every pass and only then executes the loop.

2. The Do Until...Loop variant

Do Until A > 10

' ... loop body

Loop

executes the loop until the condition is no longer satisfied.

3. The Do...Loop While variant

Do

' ... loop body

Loop While A > 10

only checks the condition after the first loop pass and terminates if this condition is satisfied.

4. The Do...Loop Until variant

Do

' ... loop body

Loop Until A > 10

also checks its condition after the first pass, but undertakes the loop until the condition is no
longer satisfied.

As in the For...Next loop, the Do...Loop also provides a terminate command. The Exit Do
command can exit at loop at any point within the loop.

Do

If A = 4 Then

Exit Do

End If

' ... loop body

While A > 10

Programming Example: Sorting With Embedded Loops
There are many ways to use loops, for example, to search lists, return values, or execute complex
mathematical tasks. The following example is an algorithm that uses to loops to sort a list by
names.

36 StarOffice™ 6.0 Basic Programmer's Guide

Sub Sort

Dim Entry(1 To 10) As String

Dim Count As Integer

Dim Count2 As Integer

Dim Temp As String

Entry(1) = "Patty"

Entry(2) = "Kurt"

Entry(3) = "Thomas"

Entry(4) = "Michael"

Entry(5) = "David"

Entry(6) = "Cathy"

Entry(7) = "Susie"

Entry(8) = "Edward"

Entry(9) = "Christine"

Entry(10) = "Jerry"

For Count = 1 To 10

For Count2 = Count + 1 To 10

If Entry(Count) > Entry(Count2) Then

Temp = Entry(Count)

Entry(Count) = Entry(Count2)

Entry(Count2) = Temp

End If

Next Count2

Next Count

For Count = 1 To 10

Print Entry(Count)

Next Count

End Sub

The values are interchanged as pairs several times until they are finally sorted in ascending order.
Like bubbles, the variables gradually migrate to the right position. For this reason, this algorithm is
also known as a Bubble Sort.

Chapter 2 The Language of StarOffice Basic 37

Procedures and Functions
Procedures and functions form pivotal points in the structure of a program. They provide the
framework for dividing a complex problem into various sub-tasks.

Procedures
A procedure executes an action without providing an explicit value. Its syntax is

Sub Test

' ... here is the actual code of the procedure

End Sub

The example defines a procedure called Test that contains code that can be accessed from any
point in the program. The call is made by entering the procedure name at the relevant point of the
program:

Test

Functions
A function, just like a procedure, combines a block of programs to be executed into one logical unit.
However, unlike a procedure, a function provides a return value.

Function Test

' ... here is the actual code of the function

Test = 123

End Function

The return value is assigned using simple assignment. The assignment does not need to be placed
at the end of the function, but can be made anywhere in the function.

The preceding function can be called within a program as follows:

Dim A

A = Test

The code defines a variable A and assigns the result of the Test function to it.

38 StarOffice™ 6.0 Basic Programmer's Guide

The return value can be overwritten several times within the function. As with classic variable
assignment, the function in this example returns the value that was last assigned to it.

Function Test

Test = 12

' ...

Test = 123

End Function

In this example, the return value of the function is 123.

If an assignment is stopped, the function returns a zero value (number 0 for numerical values and
a blank for strings).

The return value of a function can be any type. The type is declared in the same way as a variable
declaration:

Function Test As Integer

' ... here is the actual code of the function

End Function

If the specification of an explicit value is stopped, the type of the return value is assigned as
variant.

Terminating Procedures and Functions Prematurely
In StarOffice Basic, you can use the Exit Sub and Exit Function commands to terminate a
procedure or function prematurely, for example, for error handling. These commands stop the
procedure or function and return the program to the point at which the procedure and/or function
was called up.

The following example shows a procedure which terminates implementation when the

ErrorOccured variable has the value True.

Sub Test

Dim ErrorOccured As Boolean

' ...

If ErrorOccured Then

Exit Sub

End If

' ...

End Sub

Chapter 2 The Language of StarOffice Basic 39

Passing Parameters
Functions and procedures can receive one or more parameters. Essential parameters must be
enclosed in brackets after the function or procedure names. The example

Sub Test (A As Integer, B As String)

End Sub

defines a procedure that expects an integer value A and a string B as parameters.

Parameters are normally passed by Reference in StarOffice Basic. Changes made to the variables are
retained when the procedure or function is exited:

Sub Test

Dim A As Integer

A = 10

ChangeValue(A)

' The parameter A now has the value 20

End Sub

Sub ChangeValue(TheValue As Integer)

 TheValue = 20

End Sub

In this example, the value A that is defined in the Test function is passed as a parameter to the

ChangeValue function. The value is then changed to 20 and passed to TheValue, which is
retained when the function is exited.

You can also pass a parameter as a value if you do not want subsequent changes to the parameter to
affect the value that is originally passed. To specify that a parameter is to be passed as a value,

ensure that the ByVal keyword precedes the variable declaration in the function header.

In the preceding example, if we replace the ChangeValue function with the

Sub ChangeValue(ByVal TheValue As Integer)

TheValue = 20

End Sub

function, then the superordinate variable A remains unaffected by this change. After the call for the

ChangeValue function, variable A retains the value 10.

The method for passing parameters to procedures and functions in StarOffice Basic is virtually identical to
that in VBA. By default, the parameters are passed by reference. To pass parameters as values, use the
ByVal keyword. In VBA, you can also use the keyword ByRef to force a parameter to be passed by
reference. StarOffice Basic does not support this keyword because this is already the default procedure in
StarOffice Basic.

As a rule, functions and procedures in StarOffice Basic are Public. The Public and Private keywords
used in VBA are not supported in StarOffice Basic.

40 StarOffice™ 6.0 Basic Programmer's Guide

Optional Parameters
Functions and procedures can only be called up if all the necessary parameters are passed during
the call.

StarOffice Basic lets you define parameters as optional , that is, if the corresponding values are not
included in a call, StarOffice Basic passes an empty parameter. In the example

Sub Test(A As Integer, Optional B As Integer)

End Sub

the A parameter is obligatory, whereas the B parameter is optional.

The IsMissing function checks whether a parameter has been passed or is left out.

Sub Test(A As Integer, Optional B As Integer)

Dim B_Local As Integer

' Check whether B parameter is actually present

If Not IsMissing (B) Then

B_Local = B ' B parameter present

Else

B_Local = 0 ' B parameter missing -> default value 0

End If

' ... Start the actual function

End Sub

The example first tests whether the B parameter has been passed and, if necessary, passes the same

parameter to the internal B_Local variable. If the corresponding parameter is not present, then a

default value (in this instance, the value 0) is passed to B_ Local rather than the passed
parameter.

The option provided in VBA for defining default values for optional parameters is not supported in
StarOffice Basic.

The ParamArray keyword present in VBA is not supported in StarOffice Basic.

Chapter 2 The Language of StarOffice Basic 41

Error Handling
Correct handling of error situations is one of the most time-consuming tasks of programming.
StarOffice Basic provides a range of tools for simplifying error handling.

The On Error Instruction
The On Error instruction is the key to any error handling:

Sub Test

On Error Goto ErrorHandler

' ... undertake task during which an error may occur

Exit Sub

ErrorHandler:

' ... individual code for error handling

End Sub

The On Error Goto ErrorHandler line defines how StarOffice Basic proceeds in the event of

an error. The Goto ErrorHandler ensures that StarOffice Basic exits the current program line

and then executes the ErrorHandler: code.

The Resume Command
The Resume Next command continues the program from the line that follows where the error
occurred in the program after the code in the error handler has been executed:

ErrorHandler:

' ... individual code for error handling

Resume Next

Use the Resume Proceed command to specify a jump point for continuing the program after error
handling:

ErrorHandler:

' ... individual code for error handling

Resume Proceed

Proceed:

' ... the program continues here after the error

To continue a program without an error message when an error occurs, use the following format:

Sub Test

42 StarOffice™ 6.0 Basic Programmer's Guide

On Error Resume Next

' ... perform task during which an error may occur

End Sub

Use the On Error Resume Next command with caution as its effect is global. For more
information, see Tips for Structured Error Handling.

Queries Regarding Error Information
In error handling, it is useful to have a description of the error and to know where and why the
error occurred:

 The Err variable contains the number of errors that has occurred.

 The Error$ variable contains a description of the error.

 The Erl variable contains the line number where the error occurred.

The call

MsgBox "Error " & Err & ": " & Error$ & " (line : " & Erl & ")"

shows how the error information can be displayed in a message window.

Whereas VBA summarizes the error messages in a statistical object called Err, StarOffice Basic provides
the Err, Error$, and Erl variables.

The status information remains valid until the program encounters a Resume or On Error
command, whereupon the information is reset.

In VBA, the Err.Clear method of the Err object resets the error status after an error occurs. In
StarOffice Basic, this is accomplished with the On Error or Resume commands.

Tips for Structured Error Handling
Both the definition command, On Error, and the return command, Resume, are variants of the

Goto construct.

If you want to cleanly structure your code to prevent generating errors when you use this
construct, you should not use jump commands without monitoring them.

Care should be taken when you use the On Error Resume Next command as this dismisses all
open error messages.

The best solution is to use only one approach for error handling within a program - keep error
handling separate from the actual program code and do not jump back to the original code after
the error occurs.

The following is an example of an error handling procedure:

Sub Example

Chapter 2 The Language of StarOffice Basic 43

' Define error handler at the start of the function

On Error Goto ErrorHandler

' ... Here is the actual program code

' Deactivate error handling

On Error Goto 0

' End of regular program implementation

Exit Sub

' Start point of error handling

ErrorHandler:

' Check whether error was expected

If Err = ExpectedErrorNo Then

' ... Process error

Else

' ... Warning of unexpected error

End If

On Error Goto 0 ' Deactivate error handling

End Sub

This procedure begins with the definition of an error handler, followed by the actual program

code. At the end of the program code, the error handling is deactivated by the On Error Goto 0

call and the procedure implementation is ended by the Exit Sub command (not to be confused

with End Sub).

The example first checks if the error number corresponds to the expected number (as stored in the

imaginary ExpectedErrorNo constant) and then handles the error accordingly. If another error
occurs, the system outputs a warning. It is important to check the error number so that
unanticipated errors can be detected.

The On Error Goto 0 call at the end of the code resets the status information of the error (the

error code in the Err system variables) so that an error occurring at a later date can however be
clearly recognized.

44 StarOffice™ 6.0 Basic Programmer's Guide

3 The Runtime Library of StarOffice Basic
The following sections present the central functions of the runtime library.

Conversion Functions
In many situations, circumstances arise in which a variable of one type has to be changed into a
variable of another type.

Implicit and Explicit Type Conversions
The easiest way to change a variable from one type to another is to use an assignment.

Dim A As String

Dim B As Integer

B = 101

A = B

In this example, variable A is a string, and variable B is an integer. StarOffice Basic ensures that

variable B is converted to a string during assignment to variable A. This conversion is much more

elaborate than it appears: the integer B remains in the working memory in the form of a two-byte

long number. A, on the other hand, is a string, and the computer saves a one- or two-byte long

value for each character (each number). Therefore, before copying the content from B to A, B has to
be converted into A's internal format.

Unlike most other programming languages, Basic performs type conversion automatically.
However, this may have fatal consequences. Upon closer inspection, the following code sequence

Dim A As String

Dim B As Integer

Dim C As Integer

B = 1

C = 1

A = B + C

which at first glance seems straightforward, ultimately proves to be something of a trap. The Basic
interpreter first calculates the result of the addition process and then converts this into a string,
which, as its result, produces the string 2.

If, on the other hand, the Basic interpreter first converts the start values B and C into a string and

applies the plus operator to the result, it produces the string 11.

45

CHAPTER 3

The same applies when using variant variables:

Dim A

Dim B

Dim C

B = 1

C = "1"

A = B + C

Since variant variables may contain both numbers and strings, it is unclear whether variable A is
assigned the number 2 or the string 11.

The error sources noted for implicit type conversions can only be avoided by careful programming;
for example, by not using the variant data type.

To avoid other errors resulting from implicit type conversions, StarOffice Basic offers a range of
conversion functions, which you can use to define when the data type of an operation should be
converted:

 CStr(Var) – converts any data type into a string.

 CInt(Var) – converts any data types into an integer value.

 CLng(Var) – converts any data types into a long value.

 CSng(Var) – converts any data types into a single value.

 CDbl(Var) – converts any data types into a double value.

 CBool(Var) – converts any data types into a Boolean value.

 CDate(Var) – converts any data types into a date value.

You can use these conversion functions to define how StarOffice Basic should perform these type
conversion operations:

Dim A As String

Dim B As Integer

Dim C As Integer

B = 1

C = 1

A = CStr(B + C) ' B and C are added together first, then converted

 (produces the number 2)

A = CStr(B) + CStr(C) ' B and C are converted into a string, then

' combined (produces string "11")

During the first addition in the example, StarOffice Basic first adds the integer variables and then

converts the result into a chain of characters. A is assigned the string 2. In the second instance, the
integer variables are first converted into two strings and then linked with one another by means of

the assignment. A is therefore assigned the string 11.

The numerical CSng and CDbl conversion functions also accept decimal numbers. The symbol
defined in the corresponding country-specific settings must be used as the decimal point symbol.

46 StarOffice™ 6.0 Basic Programmer's Guide

Conversely, the CStr methods use the currently selected country-specific settings when formatting
numbers, dates and time details.

The Val function is different from the Csng, Cdbl and Cstr methods. It converts a string into a
number; however it always expects a period to be used as the decimal point symbol.

Dim A As String

Dim B As Double

A = "2.22"

B = Val(A) ' Is converted correctly regardless of the country-specific settings

Checking the Content of Variables
In some instances, the date cannot be converted:

Dim A As String

Dim B As Date

A = "test"

B = A ' Creates error message

In the example shown, the assignment of the test string to a date variable makes no sense, so the
Basic interpreter reports an error. The same applies when attempting to assign a string to a Boolean
variable:

Dim A As String

Dim B As Boolean

A = "test"

B = A ' Creates error message

Again, the basic interpreter reports an error.

These error messages can be avoided by checking the program before an assignment, in order to
establish whether the content of the variable to be assigned matches the type of the target variable.
StarOffice Basic provides the following test functions for this purpose:

 IsNumeric(Value) – checks whether a value is a number.

 IsDate(Value) – checks whether a value is a date.

 IsArray(Value) – checks whether a value is an array.

Chapter 3 The Runtime Library of StarOffice Basic 47

These functions are especially useful when querying user input. For example, you can check
whether a user has typed a valid number or date.

If IsNumeric(UserInput) Then

ValidInput = UserInput

Else

ValidInput = 0

MsgBox "Error message."

End If

In the previous example, if the UserInput variable contains a valid numerical value, then this is

assigned to the ValidInput variable. If UserInput does not contain a valid number,

ValidInput is assigned the value 0 and an error message is returned.

While test functions exist for checking numbers, date details and arrays in Basic, a corresponding
function for checking Boolean values does not exist. The functionality can, however, be imitated by

using the IsBoolean function:

Function IsBoolean(Value As Variant) As Boolean

On Error Goto ErrorIsBoolean:

Dim Dummy As Boolean

Dummy = Value

IsBoolean = True

On Error Goto 0

Exit Sub

ErrorIsBoolean:

IsBoolean = False

On Error Goto 0

End Function

The IsBoolean function defines an internal Dummy help variable of the Boolean type and tries to

assign this to the transferred value. If assignment is successful, the function returns True. If it fails,
a runtime error is produced, which intercepts the test function to return an error.

If a string in StarOffice Basic contains a non-numerical value and if this is assigned to a number, StarOffice
Basic does not produce an error message, but transfers the value 0 to the variable. This procedure differs
from VBA. There, an error is triggered and program implementation terminated if a corresponding
assignment is executed.

48 StarOffice™ 6.0 Basic Programmer's Guide

Strings

Working with Sets of Characters
When administering strings, StarOffice Basic uses the set of Unicode characters. The Asc and Chr
functions allow the Unicode value belonging to a character to be established and/or the
corresponding character to be found for a Unicode value. The following expressions assign the

various Unicode values to the code variable:

Code = Asc("A") ' Latin letter A (Unicode-value 65)

Code = Asc("€") ' Euro character (Unicode-value 8364)

Code = Asc("л") ' Cyrillic letter л (Unicode-value 1083)

Conversely, the expression

MyString = Chr(13)

ensures that the MyString string is initialized with the value of the number 13, which stands for a
hard line break.

The Chr command is often used in Basic languages to insert control characters in a string.
The assignment

MyString = Chr(9) + "Das ist ein Test" + Chr(13)

therefore ensures that the text is preceded by a tab character (Unicode-value 9) and that a hard line

break (Unicode-value 13) is added after the text.

Accessing Parts of a String
StarOffice Basic provides four functions that return partial strings:

 Left(MyString, Length) – returns the first Length characters of MyString.

 Right(MyString, Length) – returns the last Length characters of MyString.

 Mid(MyString, Start, Length) – returns first Length characters of MyString as of the

Start position.

 Len(MyString) – returns the number of characters in MyString.

Here are a few example calls for the named functions:

Dim MyString As String

Dim MyResult As String

Dim MyLen As Integer

MyString = "This is a small test"

MyResult = Left(MyString,5) ' Provides the string "This "

MyResult = Right(MyString, 5) ' Provides the string " test"

MyResult = Mid(MyString, 8, 5) ' Provides the string " a sm"

Chapter 3 The Runtime Library of StarOffice Basic 49

MyLen = Len(MyString) ' Provides the value 21

Search and Replace
StarOffice Basic provides the InStr function for searching for a partial string within another string:

ResultString = InStr (SearchString, MyString)

The SearchString parameter specifies the string to be searched for within MyString. The

function returns a number that contains the position at which the SearchString first appears

within MyString. If you want to find other matches for the string, the function also provides the
opportunity to specify an optional start position from which StarOffice Basic begins the search. In this
case, the syntax of the function is:

ResultString = InStr(StartPosition, SearchString, MyString)

In the previous examples, InStr ignores uppercase and lowercase characters. To change the

search so that InStr is case sensitive, add the parameter 0, as shown in the following example:

ResultString = InStr(SearchString, MyString, 0)

Using the previous functions for editing strings, programmers can search for and replace one
string in another string:

Function Replace(Source As String, Search As String, NewPart As String)

 Dim Result As String

 Dim StartPos As Long

 Dim CurrentPos As Long

 Result = ""

 StartPos = 1

 CurrentPos = 1

 If Search = "" Then

 Result = Source

 Else

 Do While CurrentPos <> 0

 CurrentPos = InStr(StartPos, Source, Search)

 If CurrentPos <> 0 Then

 Result = Result + Mid(Source, StartPos, _

CurrentPos - StartPos)

 Result = Result + NewPart

 StartPos = CurrentPos + Len(Search)

 Else

 Result = Result + Mid(Source, StartPos, Len(Source))

 End If ' Position <> 0

 Loop

 End If

 Replace = Result

End Function

The function searches through the transferred Search string in a loop by means of InStr in the

original term Source. If it finds the search term, it takes the part before the expression and writes

50 StarOffice™ 6.0 Basic Programmer's Guide

it to the Result return buffer. It adds the new Part section at the point of the search term

Search. If no more matches are found for the search term, the function establishes the part of the
string still remaining and adds this to the return buffer. It returns the string produced in this way
as the result of the replacement process.

Since replacing parts of character sequences is one of the most frequently used functions, the Mid
function in StarOffice Basic has been extended so that this task is performed automatically. The
following example

Dim MyString As String

MyString = "This was my text"

Mid(MyString, 6, 3, "is")

replaces three characters with the string is from the sixth position of the MyString string.

Formatting Strings
The Format function formats numbers as a string. To do this, the function expects a Format
expression to be specified, which is then used as the template for formatting the numbers. Each
place holder within the template ensures that this item is formatted correspondingly in the output
value. The five most important place holders within a template are the zero (0), pound sign (#),
period (.), comma (,) and dollar sign ($) characters.

The zero character within the template ensures that a number is always placed at the corresponding
point. If a number is not provided, 0 is displayed in its place.

A period stands for the decimal point symbol defined by the operating system in the country-
specific settings.

The example below shows how the zero and period characters can define the digits after the decimal
point in an expression:

MyFormat = "0.00"

MyString = Format(-1579.8, MyFormat) ' Provides "-1579,80"

MyString = Format(1579.8, MyFormat) ' Provides "1579,80"

MyString = Format(0.4, MyFormat) ' Provides "0,40"

MyString = Format(0.434, MyFormat) ' Provides "0,43"

In the same way, zeros can be added in front of a number to achieve the desired length:

MyFormat = "0000.00"

MyString = Format(-1579.8, MyFormat) ' Provides "-1579,80"

MyString = Format(1579.8, MyFormat) ' Provides "1579,80"

MyString = Format(0.4, MyFormat) ' Provides "0000,40"

MyString = Format(0.434, MyFormat) ' Provides "0000,43"

A comma represents the character that the operating system uses for a thousands separator, and the
pound sign stands for a digit or place that is only displayed if it is required by the input string.

MyFormat = "#,##0.00"

Chapter 3 The Runtime Library of StarOffice Basic 51

MyString = Format(-1579.8, MyFormat) ' Provides "-1.579,80"

MyString = Format(1579.8, MyFormat) ' Provides "1.579,80"

MyString = Format(0.4, MyFormat) ' Provides "0,40"

MyString = Format(0.434, MyFormat) ' Provides "0,43"

In place of the dollar sign place holder, the Format function displays the relevant currency symbol
defined by the system:

MyFormat = "#,##0.00 $"

MyString = Format(-1579.8, MyFormat) ' Provides "-1.579,80 €"

MyString = Format(1579.8, MyFormat) ' Provides "1.579,80 €"

MyString = Format(0.4, MyFormat) ' Provides "0,40 €"

MyString = Format(0.434, MyFormat) ' Provides "0,43 €"

The format instructions used in VBA for formatting date and time details are not supported in StarOffice
Basic.

Date and Time
StarOffice Basic provides the Date data type, which saves the date and time details in binary
format.

Specification of Date and Time Details within the Program
Code
You can assign a date to a date variable through the assignment of a simple string:

Dim MyDate As Date

MyDate = "1.1.2002"

This assignment can function properly because StarOffice Basic automatically converts the date
value defined as a string into a date variable. This type of assignment, however, can cause errors,
date and time values are defined and displayed differently in different countries.

Since StarOffice Basic uses the country-specific settings of the operating system when converting a
string into a date value, the expression shown previously only functions correctly if the country-
specific settings match the string expression.

To avoid this problem, the DateSerial function should be used to assign a fixed value to a date
variable:

52 StarOffice™ 6.0 Basic Programmer's Guide

Dim MyVar As Date

MyDate = DateSerial (2001, 1, 1)

The function parameter must be in the sequence: year, month, day. The function ensures that the
variable is actually assigned the correct value regardless of the country-specific settings

The TimeSerial function formats time details in the same way that the DateSerial function
formats dates:

Dim MyVar As Date

MyDate = TimeSerial(11, 23, 45)

Their parameters should be specified in the sequence: hours, minutes, seconds.

Extracting Date and Time Details
The following functions form the counterpart to the DateSerial and TimeSerial functions:

 Day(MyDate) – returns the day of the month from MyDate

 Month(MyDate) – returns the month from MyDate

 Year(MyDate) – returns the year from MyDate

 Weekday(MyDate) – returns the number of the weekday from MyDate

 Hour(MyTime) – returns the hours from MyTime

 Minute(MyTime) – returns the minutes from MyTime

 Second(MyTime) – returns the seconds from MyTime

These functions extract the date or time sections from a specified Date variable. The example

Dim MyDate As Date

' ... Initialization of MyDate

If Year(MyDate) = 2003 Then

' ... Specified date is in the year 2003

End If

checks whether the date saved in MyDate is in the year 2003. In the same way, the example

Dim MyTime As Date

' ... Initialization of MyTime

If Hour(MyTime) >= 12 And Hour(MyTime) < 14 Then

' ... Specified time is between 12 and 14 hours

End If

checks whether MyTime is between 12 and 14 hours.

Chapter 3 The Runtime Library of StarOffice Basic 53

The Weekday function returns the number of the weekday for the transferred date:

Dim MyDate As Date

Dim MyWeekday As String

' ... initialize MyDate

Select Case WeekDay(MyDate)

case 1

MyWeekday = "Sunday"

case 2

MyWeekday = "Monday"

case 3

MyWeekday = "Tuesday"

case 4

MyWeekday = "Wednesday"

case 5

MyWeekday = "Thursday"

case 6

MyWeekday = "Friday"

case 7

MyWeekday = "Saturday"

End Select

Note: Sunday is considered the first day of the week.

Retrieving System Date and Time
The following functions are available in StarOffice Basic to retrieve the system time and system date:

 Date – returns the present date

 Time – returns the present time

 Now – returns the present point in time (date and time as combined value)

Files and directories
Working with files is one of the basic tasks of an application. The StarOffice API provides you with
a whole range of objects with which you can create, open and modify Office documents. These are
presented in detail in Chapter 4. Regardless of this, in some instances you will have to directly
access the file system, search through directories or edit text files. The runtime library from
StarOffice Basic provides several fundamental functions for these tasks.

Some DOS-specific file and directory functions are no longer provided in StarOffice 6.0, or their function

is only limited. For example, support for the ChDir, ChDrive and CurDir functions is not provided.
Some DOS-specific properties are no longer used in functions that expect file properties as parameters (for
example, to differentiate from concealed files and system files). This change became necessary to ensure
the greatest possible level of platform independence for StarOffice.

54 StarOffice™ 6.0 Basic Programmer's Guide

Administering Files

Searching through Directories

The Dir function in StarOffice Basic is responsible for searching through directories for files and
sub-directories. When first requested, a string containing the path of the directories to be searched

must be assigned to Dir as its first parameter. The second parameter of Dir specifies the file or
directory to be searched for. StarOffice Basic returns the name of the first directory entry found. To

retrieve the next entry, the Dir function should be requested without parameters. If the Dir
function finds no more entries, it returns an empty string.

The following example shows how the Dir function can be used to request all files located in one

directory. The procedure saves the individual file names in the AllFiles variable and then displays
this in a message box.

Sub ShowFiles

Dim NextFile As String

Dim AllFiles As String

AllFiles = ""

NextFile = Dir("C:\", 0)

While NextFile <> ""

AllFiles = AllFiles & Chr(13) & NextFile

NextFile = Dir

Wend

MsgBox AllFiles

End Sub

The 0 used as the second parameter in the Dir function ensures that Dir only returns the names of
files and directories are ignored. The following parameters can be specified here:

 0 : returns normal files

 16 : sub-directories

The following example is virtually the same as the preceding example, but the Dir function
transfers the value 16 as a parameter, which returns the sub-directories of a folder rather than the
file names.

Sub ShowDirs

Dim NextDir As String

Dim AllDirs As String

AllDirs = ""

NextDir = Dir("C:\", 16)

While NextDir <> ""

AllDirs = AllDirs & Chr(13) & NextDir

NextDir = Dir

Wend

MsgBox AllDirs

End Sub

Chapter 3 The Runtime Library of StarOffice Basic 55

When requested in StarOffice Basic, unlike the case with VBA, the Dir function using the parameter 16
only returns the sub-directories of a folder. (In VBA, the function also returns the names of the standard
files so that further checking is needed to retrieve the directories only).

The options provided in VBA for searching through directories specifically for files with the concealed,
system file, archived and volume name properties does not exist in StarOffice Basic because the
corresponding file system functions are not available on all operating systems.

The path specifications listed in Dir may use the * and ? place holders in both VBA and StarOffice Basic.
In StarOffice Basic, the * place holder may however only be the last character of a file name and/or file
extension, which is not the case in VBA.

Creating and Deleting Directories

StarOffice Basic provides the MkDir function for creating directories.

MkDir ("C:\SubDir1")

This function creates directories and sub-directories. All directories needed within a hierarchy are

also created, if required. For example, if only the C:\SubDir1 directory exists, then a call

MkDir ("C:\SubDir1\SubDir2\SubDir3\")

creates both the C:\SubDir1\SubDir2 directory and the C:\SubDir1\SubDir2\SubDir3
directory.

The RmDir function deletes directories.

RmDir ("C:\SubDir1\SubDir2\SubDir3\")

If the directory contains sub-directories or files, these are also deleted. You should therefore be

careful when using RmDir.

In VBA, the MkDir and RmDir functions only relate to the current directory. In StarOffice Basic on the
other hand, MkDir and RmDir can be used to create or delete levels of directories.

In VBA, RmDir produces an error message if a directory contains a file. In StarOffice Basic, the directory
and all its files are deleted.

56 StarOffice™ 6.0 Basic Programmer's Guide

Copying, Renaming, Deleting and Checking the Existence of Files

The call

FileCopy(Source, Destination)

creates a copy of the Source file under the name of Destination.

With the help of the function

Name OldName As NewName

you can rename the OldName file with NewName. The As keyword syntax, and the fact that a
comma is not used, goes back to the roots of the Basic language.

The call

Kill(Filename)

deletes the Filename file. If you want to delete directory (including its files)use the RmDir
function.

The FileExists function can be used to check whether a file exists:

If FileExists(Filename) Then

MsgBox "file exists."

End If

Reading and Changing File Properties

When working with files, it is sometimes important to be able to establish the file properties, the
time the file was last changed and the length of the file.

The call

Dim Attr As Integer

Attr = GetAttr(Filename)

returns some properties about a file. The return value is provided as a bit mask in which the
following values are possible:

 1 : read-only file

 16 : name of a directory

Chapter 3 The Runtime Library of StarOffice Basic 57

The example

Dim FileMask As Integer

Dim FileDescription As String

FileMask = GetAttr("test.txt")

If (FileMask AND 1) > 0 Then

FileDescription = FileDescription & " read-only "

End IF

If (FileMask AND 16) > 0 Then

FileDescription = FileDescription & " directory "

End IF

If FileDescription = "" Then

FileDescription = " normal "

End IF

MsgBox FileDescription

determines the bit mask of the test.txt file and checks whether this is read-only whether it is a

directory. If neither of these apply, FileDescription is assigned the "normal" string.

The flags used in VBA for querying the concealed, system file, archived and volume name file properties
are not supported in StarOffice Basic because these are Windows-specific and are not or are only partially
available on other operating systems.

The SetAttr function permits the properties of a file to be changed. The call

SetAttr("test.txt", 1)

can therefore be used to provide a file with read-only status. An existing read-only status can be
deleted with the following call:

SetAttr("test.txt", 0)

The date and time of the last amendment to a file are provided by the FileDateTime function.
The date is formatted here in accordance with the country-specific settings used on the system.

FileDateTime("test.txt") ' Provides date and time of the last file amendment.

The FileLen function determines the length of a file in bytes (as long integer value).

FileLen("test.txt") ' Provides the length of the file in bytes

58 StarOffice™ 6.0 Basic Programmer's Guide

Writing and Reading Text Files
StarOffice Basic provides a whole range of methods for reading and writing files. The following
explanations relate to working with text files (not text documents).

Writing Text Files

Before a text file is accessed, it must first be opened. To do this, a free file handle is needed, which
clearly identifies the file for subsequent file access.

The FreeFile function is used to create a free file handle. The handle is used as a parameter for

the Open instruction, which opens the file. To open a file so that it can be specified as a text file, the

Open call is:

Open Filename For Output As #FileNo

Filename is a string containing the name of the file. FileNo is the handle created by the

FreeFile function.

Once the file is opened, the Print instruction can be described line by line:

Print #FileNo, "This is a test line."

FileNo also stands for the file handle here. The second parameter specifies the text that is to be
saved as a line of the text file.

Once the writing process has been completed, the file must be closed using a Close call:

Close #FileNo

Again here, the file handle should be specified.

The following example shows how a text file is opened, described and closed:

Dim FileNo As Integer

Dim CurrentLine As String

Dim Filename As String

Filename = "c:\data.txt" ' Define file name

FileNo = Freefile ' Establish free file handle

Open Filename For Output As #FileNo ' Open file (writing mode)

Print #FileNo, "This is a line of text" ' Save line

Print #FileNo, "This is another line of text" ' Save line

Close #FileNo ' Close file

Reading Text Files

Text files are read in the same way that they are written. The Open instruction used to open the file

contains the For Input expression in place of the For Output expression and, rather than the

Print command for writing data, the Line Input instruction should be used to read the data.

Chapter 3 The Runtime Library of StarOffice Basic 59

Finally, when calling up a text file, the instruction

eof(FileNo)

is used to check whether the end of the file has been reached.

The following example shows how a text file can be read in:

Dim FileNo As Integer

Dim CurrentLine As String

Dim File As String

Dim Msg as String

' Define filename

Filename = "c:\data.txt"

' Establish free file handle

FileNo = Freefile

' Open file (reading mode)

Open Filename For Input As FileNo

' Check whether file end has been reached

Do While not eof(FileNo)

' Read line

Line Input #FileNo, CurrentLine

If CurrentLine <>"" then

Msg = Msg & CurrentLine & Chr(13)

end if

Loop

' Close file

Close #FileNo

Msgbox Msg

The individual lines are retrieved in a Do While loop, saved in the Msg variable, and displayed at
the end in a message box.

Message and Input Boxes
StarOffice Basic provides the MsgBox and InputBox functions for basic user communication.

Displaying Messages
MsgBox displays a basic information box, which can have one or more buttons. In its simplest
variant

MsgBox "This is a piece of information!"

the MsgBox only contains text and an OK button.

60 StarOffice™ 6.0 Basic Programmer's Guide

The appearance of the information box can be changed using a parameter. The parameter provides
the option of adding additional buttons, defining the pre-assigned button, and adding an
information symbol. The values for selecting the buttons are:

 0 – OK button

 1 – OK and Cancel button

 2 – Cancel and Retry buttons

 3 – Yes, No and Cancel buttons

 4 – Yes and No buttons

 5 – Retry and Cancel buttons

To set a button as the default button, add one of the following values to the parameter value from
the list of button selections. For example, to create Yes, No and Cancel buttons (value 3) where
Cancel is the default (value 512), the parameter value is 3 + 512 = 515.

 0 – First button is default value

 256 – Second button is default value

 512 – Third button is default value

Finally, the following information symbols are available and can also be displayed by adding the
relevant parameter values:

 16 – Stop sign

 32 – Question mark

 48 – Exclamation point

 64 – Tip icon

The call

MsgBox "Do you want to continue?", 292

displays an information box with the Yes and No buttons (value 4), of which the second button
(No) is set as the default value (value 256) and which also receives a question mark (value 32),
4+256+32=292

If an information box contains several buttons, then a return value should be queried to determine
which button has been pressed. The following return values are available in this instance:

 1 – Ok

 2 – Cancel

 4 – Retry

 5 – Ignore

 6 – Yes

 7 – No

Chapter 3 The Runtime Library of StarOffice Basic 61

In the previous example, checking the return values could be as follows:

If MsgBox ("Do you want to continue?", 292) = 6 Then

' Yes button pressed

Else

' No button pressed

End IF

In addition to the information text and the parameter for arranging the information box, MsgBox also
permits a third parameter, which defines the text for the box title:

MsgBox "Do you want to continue?", 292, "Fenstertitel"

If no box title is specified, the default is “soffice”.

Input Box For Querying Simple Strings
The InputBox function queries simple strings from the user. It is therefore a simple alternative to

configuring dialogs. InputBox receives three standard parameters:

 an information text,

 a box title,

 a default value which can be added within the input area.

InputVal = InputBox("Please enter value:", "Test", "default value")

As a return value, the InputBox provides the string typed by the user.

Other functions

Beep
The Beep function causes the system to play a sound that can be used to warn the user of an

incorrect action. Beep does not have any parameters:

Beep ' creates an informative tone

62 StarOffice™ 6.0 Basic Programmer's Guide

Shell
External programs can be started using the Shell function.

Shell(Pathname, Windowstyle, Param)

Pathname defines the path of the program to be executed. Windowstyle defines the window in
which the program is started. The following values are possible:

 0 – The program receives the focus and is started in a concealed window.

 1 – The program receives the focus and is started in a normal-sized window.

 2 – The program receives the focus and is started in a minimized window.

 3 – The program receives the focus and is started in a maximized window.

 4 – The program is started in a normal-sized window, without receiving the focus.

 6 – The program is started in a minimized window, the focus remains in the current window.

 10 – The program is started in full screen mode.

The third parameter, Param, permits command line parameters to be transferred to the program
to be started.

Wait
The Wait function terminates program execution for a specified time. The waiting period is
specified in milliseconds. The command

Wait 2000

specifies an interrupt of 2 seconds (2000 milliseconds).

Environ
The Environ function returns the environmental variables of the operating system. Depending on
the system and configuration, various types of data are saved here. The call

Dim TempDir

TempDir=Environ ("TEMP")

determines the environment variables of temporary directory of the operating system.

Chapter 3 The Runtime Library of StarOffice Basic 63

64 StarOffice™ 6.0 Basic Programmer's Guide

4 Introduction to the StarOffice API
The StarOffice API is a universal programming interface for access to StarOffice. You can use the
StarOffice API to create, open, modify and print out StarOffice documents. It provides the option of
extending the functional scope of StarOffice through personal macros and allows personal dialogs to be
written.

The StarOffice API may not only be used with StarOffice Basic, but also with other programming
languages such as Java and C++. A technique called Universal Network Objects (UNO) which
provides an interface to various programming languages makes this possible.

This chapter centers on how StarOffice can be used in StarOffice Basic with the aid of UNO. It
describes the main concepts of UNO from the standpoint of a StarOffice Basic programmer. Details
on how to work with the various parts of the StarOffice API can be found in the following chapters.

Universal Network Objects (UNO)
StarOffice provides a programming interface in the form of the Universal Network Objects (UNO).
This is an object-oriented programming interface which StarOffice sub-divides into various objects
which for their part ensure program-controlled access to the Office package.

Since StarOffice Basic is a procedural programming language, several linguistic constructs have
had to be added to it which enable the use of UNO.

To use a Universal Network Object in StarOffice Basic, you will need a variable declaration for the

associated object. The declaration is made using the Dim instruction (see Chapter 2). The Object
type designation should be used to declare an object variable:

Dim Obj As Object

The call declares an object variable named Obj.

The object variable created must then be initialized so that it can be used. This can be done using

the createUnoService function:

Obj = createUnoService("com.sun.star.frame.Desktop")

This call assigns to the Obj variable a reference to the newly created object.

com.sun.star.frame.Desktop resembles an object type; however in UNO terminology it is

called a “service” rather than a type. In accordance with UNO philosophy, an Obj is described as a

reference to an object which supports the com.sun.star.frame.Desktop service. The “service”

65

CHAPTER 4

term used in StarOffice Basic therefore corresponds to the type and class terms used in other
programming languages.

There is, however, one main difference: a Universal Network Object may support several services
at the same time. Some UNO services in turn support other services so that, through one object,
you are provided with a whole range of services. For example, that the aforementioned object,

which is based on the com.sun.star.frame.Desktop service, can also include other services
for loading documents and for ending the program.

Whereas the structure of an object in VBA is defined by the class to which it belongs, in StarOffice Basic
the structure is defined through the services which it supports. A VBA object is always assigned to
precisely one single class. A StarOffice Basic object can, however, support several services.

Properties and Methods
An object in StarOffice Basic provides a range of properties and methods which can be called by
means of the object.

Properties
Properties are like the properties of an object; for example, Filename and Title for a Document
object.

The properties are set by means of a simple assignment:

Document.Title = "StarOffice 6.0 Basic Programmer's Guide"

Document.Filename = "progman.sxv"

A property, just like a normal variable, has a type that defines which values it can record.

The preceding Filename and Title properties are of the string type.

Real Properties and Imitated Properties

Most of the properties of an object in StarOffice Basic are defined as such in the UNO description of
the service. In addition to these "real" properties, there are also properties in StarOffice Basic which
consist of two methods at the UNO level. One of these is used to query the value of the property

and the other is issued to set it (get and set methods). The property has been virtually imitated

from two methods. Character objects in UNO, for example, provide the getPosition and

setPosition methods through which the associated key point can be called up and changed. The

StarOffice Basic programmer can access the values through the Position property. Regardless of

this, the original methods are also available (in our example, getPosition and setPosition).

66 StarOffice™ 6.0 Basic Programmer's Guide

Methods
Methods can be understood as functions that relate directly to an object and through which this

object is called. The preceding Document object could, for example, provide a Save method,
which can be called as follows:

Document.Save()

Methods, just like functions, may contain parameters and return values. The syntax of such method
calls is oriented towards classic functions. The call

Ok = Document.Save(True)

also specifies the True parameter for the document object when requesting the Save method.

Once the method has been completed, Save saves a return value in the Ok variable.

Module, Services and Interfaces
StarOffice provides hundreds of services. To provide an overview of these services, they have been
combined into modules. The modules are of no other functional importance for StarOffice Basic
programmers. When specifying a service name, it is only the module name which is of any
importance because this must be also listed in the name. The complete name of a service consists of

the com.sun.star expression, which specifies that it is a StarOffice service, followed by the

module name, such as frame, and finally the actual service name, such as Desktop. The
complete name in the named example would be:

com.sun.star.frame.Desktop

In addition to the module and service terms, UNO introduces the term “interface”. While this term
may be familiar to Java programmers, it is not used in Basic.

An interface combines several methods. In the strictest sense of the word, a service in UNO does
not support methods, but rather interfaces, which in turn provide different methods. In other
words, the methods are assigned (as combinations) to the service in interfaces. This detail may be
of interest in particular to Java- or C++ programmers, since in these languages, the interface is
needed to request a method. In StarOffice Basic, this is irrelevant. Here, the methods are called
directly by means of the relevant object.

For an understanding of the API, it is, however, useful to have the assignment of methods to
various interfaces handy, since many interfaces are used in the different services. If you are
familiar with an interface, then you can transfer your knowledge from one service to another.

Some central interfaces are used so frequently that they are shown again at the end of this chapter,
triggered by different services.

Chapter 4 Introduction to the StarOffice API 67

Tools for Working with UNO
The question remains as to which objects – or services if we are going to remain with UNO
terminology – support which properties, methods and interfaces and how these can be determined.
In addition to this guide, you can get more information about objects from the following sources:

the supportsService method, the debug methods as well as the Developer's Guide, and the API
reference.

The supportsService Method
A number of UNO objects support the supportsService method, with which you can establish
whether an object supports a particular service. The call

Ok = TextElement.supportsService("com.sun.star.text.Paragraph")

for example, determines whether the TextElement object supports the

com.sun.star.text.Paragraph service.

Debug Properties
Every UNO object in StarOffice Basic knows what properties, methods and interfaces it already
contains. It provides properties that return these in the form of a list. The corresponding properties
are:

DBG_properties - returns a string containing all properties of an object

DBG_methods - returns a string containing all methods of an object

DBG_supportetInterfaces - returns a string containing all interfaces which support an object.

The following program code shows how DBG_properties and DBG_methods can be used in

real-life applications. It first creates the com.sun.star.frame.Desktop service and then
displays the supported properties and methods in message boxes.

Dim Obj As Object

Obj = createUnoService("com.sun.star.frame.Desktop")

MsgBox Obj.DBG_Propierties

MsgBox Obj.DBG_methods

When using DBG_properties, note that the function returns all properties that one particular
service can theoretically support. No assurances are, however, provided for whether these can also
be used by the object in question. Before calling up properties, you must therefore use the

IsEmpty function to check whether this is actually available.

68 StarOffice™ 6.0 Basic Programmer's Guide

API Reference
More information about the available services, and their interfaces, methods and properties can be
found in the API reference for the StarOffice API. This can be found at www.openoffice.org:

http://api.openoffice.org/common/ref/com/sun/star/module-ix.html

An Overview of a Few Central Interfaces
Some interfaces of StarOffice can be found in many parts of the StarOffice API. They define sets of
methods for abstract tasks which can be applied to various problems. Here, you will find an
overview of the most common of these interfaces.

The origin of the objects is explained at a later point in this guide. At this point, only some of the
abstract aspects of objects, for which the StarOffice API provides some central interfaces, are
discussed.

Creating Context-Dependent Objects
The StarOffice API provides two options for creating objects. One can be found in the

createUnoService function mentioned at the start of this chapter. createUnoService
creates an object which can be used universally. Such objects and services are also known as
context-independent services.

In addition to context-independent services, there are also context-dependent services whose objects
are only useful when used in conjunction with another object. A drawing object for a spreadsheet
document, for example, can therefore only exist in conjunction with this one document.

com.sun.star.lang.XMultiServiceFactory Interface

Context-dependent objects are usually created by means of an object method, on which the object

depends. The createInstance method, which is defined in the XMultiServiceFactory
interface, is used in particular in the document objects.

The aforementioned drawing object can, for example,e be created as follows using a spreadsheet
object:

Dim RectangleShape As Object

RectangleShape = _

Spreadsheet.createInstance("com.sun.star.drawing.RectangleShape")

A paragraph template in a text document is created in the same way:

Dim Style as Object

Style = Textdocument.createInstance("com.sun.star.style.ParagraphStyle")

Chapter 4 Introduction to the StarOffice API 69

Named Access to Subordinate Objects
The XNameAccess and XNameContainer interfaces are used in objects that contain subordinate
objects, which can be addressed using a natural language name.

While XNamedAccess permits access to the individual objects, XNameContainer takes on the
insertion, modification and deletion of elements.

com.sun.star.container.XNameAccess Interface

An example of the use of XNameAccess is provided by the sheet object of a spreadsheet. It
combines all the pages within the spreadsheet. The individual pages are accessed using the

getByName method from XNameAccess:

Dim Sheets As Object

Dim Sheet As Object

Sheets = Spreadsheet.Sheets

Sheet = Sheets.getByName("Sheet1")

The getElementNames method provides an overview of the names of all elements. As a result, it
returns a data field containing the names. The following example shows how all element names of
a spreadsheet can thereby be determined and displayed in a loop:

Dim Sheets As Object

Dim SheetNames

Dim I As Integer

Sheets = Spreadsheet.Sheets

SheetNames = Sheets.getElementNames

For I=LBound(SheetNames) To UBound(SheetNames)

MsgBox SheetNames(I)

Next I

The hasByName method of the XNameAccess interface reveals whether a subordinate object with
a particular name exists within the basic object. The following example therefore displays a

message that informs the user whether the Spreadsheet object contains a page of the name

Sheet1.

Dim Sheets As Object

Sheets = Spreadsheet.Sheets

If Sheets.HasByName("Sheet1") Then

MsgBox " Sheet1 available"

Else

MsgBox "Sheet1 not available"

End If

70 StarOffice™ 6.0 Basic Programmer's Guide

com.sun.star.container.XNameContainer Interface

The XNameContainer interface takes on the insertion, deletion and modification of subordinate

elements in a basic object. The functions responsible are insertByName, removeByName and

replaceByName.

The following is a practical example of this. It calls a text document, which contains a

StyleFamilies object and uses this to in turn make the paragraph templates (ParagraphStyles)
of the document available.

Dim StyleFamilies As Objects

Dim ParagraphStyles As Objects

Dim NewStyle As Object

StyleFamilies = Textdoc.StyleFamilies

ParagraphStyles = StyleFamilies.getByName("ParagraphStyles")

ParagraphStyles.insertByName("NewStyle", NewStyle)

ParagraphStyles.replaceByName("ChangingStyle", NewStyle)

ParagraphStyles.removeByName("OldStyle")

The insertByName line inserts the NewStyle style under the name of the same name in the

ParagraphStyles object. The replaceByName line changes the object behind ChangingStyle

into NewStyle. Finally, the removeByName call removes the object behind OldStyle from

ParagraphStyles.

Index-Based Access to Subordinate Objects
The XIndexAccess and XIndexContainer interfaces are used in objects which contain
subordinate objects and which can be addressed using an index.

XIndexAccess provides the methods for accessing individual objects.

XIndexContainer provides methods for inserting and removing elements.

com.sun.star.container.XIndexAccess Interface

XIndexAccess provides the getByIndex and getCount methods for calling the subordinate

objects. getByIndex provides an object with a particular index. getCount returns how many
objects are available.

Dim Sheets As Object

Dim Sheet As Object

Dim I As Integer

Sheets = Spreadsheet.Sheets

For I = 0 to Sheets.getCount() - 1

Sheet = Sheets.getByIndex(I)

' Editing sheet

Next I

Chapter 4 Introduction to the StarOffice API 71

The example shows a loop that runs through all sheet elements one after another and saves a

reference to each in the Sheet object variable. When working with the indexes, note that

getCount returns the number of elements. The elements in getByIndex however are numbered

beginning with 0. The counting variable of the loop therefore runs from 0 to getCount()-1.

com.sun.star.container.XIndexContainer Interface

The XIndexContainer interface provides the insertByIndex and removeByIndex functions.

The parameters are structured in the same way as the corresponding functions in XNameContainer.

Iterative Access to Subordinate Objects
In some instances, an object may contain a list of subordinate objects that cannot be addressed by

either a name or an index. In these situations, the XEnumeration and XenumerationAccess
interfaces are appropriate. They provide a mechanism through which all subordinate elements of
an objects can be passed, step by step, without having to use direct addressing.

com.sun.star.container.XEnumeration and XenumerationAccess Interfaces

The basic object must provide the XEnumerationAccess interface, which contains only a

createEnumeration method. This returns an auxiliary object, which in turn provides the

XEnumeration interface with the hasMoreElements and nextElement methods. Through
these, you then have access to the subordinate objects.

The following example steps through all the paragraphs of a text:

Dim ParagraphEnumeration As Object

Dim Paragraph As Object

ParagraphEnumeration = Textdoc.Text.createEnumeration

While ParagraphEnumeration.hasMoreElements()

Paragraph = ParagraphElements.nextElement()

Wend

The example first creates a ParagraphEnumeration auxiliary object. This gradually returns the
individual paragraphs of the text in a loop. The loop is terminated as soon as the

hasMoreElements method returns the False value, signaling that the end of the text has been
reached.

72 StarOffice™ 6.0 Basic Programmer's Guide

5 Working with StarOffice Documents
The StarOffice API has been structured so that as many of its parts as possible can be used
universally for different tasks. This includes the interfaces and services for creating, opening,
saving, converting, and printing documents and for template administration. Since these function
areas are available in all types of documents, they are explained first in this chapter.

The StarDesktop
When working with documents, there are two services which are used most frequently:

 The com.sun.star.frame.Desktop service, which is similar to the core service of
StarOffice. It provides the functions for the frame object of StarOffice, under which all
document windows are classified. Documents can also be created, opened and imported using
this service.

 The basic functionality for the individual document objects is provided by the

com.sun.star.document.OfficeDocument service. This provides the methods for saving,
exporting and printing documents.

The com.sun.star.frame.Desktop service opens automatically when StarOffice is started. To
do this, StarOffice creates an object which can be reached by means of the global name

StarDesktop.

The most important interface of the StarDesktop is

com.sun.star.frame.XComponentLoader. This basically covers the

loadComponentFromURL method, which is responsible for creating, importing and opening
documents.

The name of the StarDesktop object dates back to StarOffice 5, in which all document windows were
embedded in one common application called StarDesktop. In the present version of StarOffice, a visible
StarDesktop is no longer used. The name StarDesktop was, however, retained for the frame object of
StarOffice because it clearly indicates that this is a basic object for the entire application.

The StarDesktop object assumes the position of successor to the Application object of StarOffice 5
which previously applied as a root object. Unlike the old Application object however it is primarily
responsible for opening new documents. The functions resident in the old Application object for
controlling the on-screen depiction of StarOffice (for example, FullScreen, FunctionBarVisible,
Height, Width, Top, Visible) are no longer used.

Whereas the active document in Word is accessed through Application.ActiveDocument and in
Excel through Application.ActiveWorkbook, in StarOffice, the StarDesktop is responsible for this

73

CHAPTER 5

task. The active document object is accessed in StarOffice 6.0 through the
StarDesktop.CurrentComponent property.

Basic Information about Documents in StarOffice
When working with StarOffice documents, it is useful to deal with some of the basic issues of
document administration in StarOffice. This includes the way in which file names are structured
for StarOffice documents, as well as the format in which files are saved.

File Names in URL Notation

Since StarOffice is a platform-independent application, it uses URL notation (which is independent
of any operating system), as defined in the Internet Standard RFC 1738 for file names. Standard file
names using this system begin with the prefix

file:///

followed by the local path. If the file name contains sub-directories, then these are separated by a
single forward slash., not with a backslash usually used under Windows. The following path

references the test.sxw file in the doc directory on the C drive:.

file:///C:/doc/test.sxw

To covert local file names into an URL, StarOffice provides the ConvertToUrl function.

To convert an URL into a local file name, StarOffice provides the ConvertFromUrl function:

MsgBox ConvertToUrl("C:\doc\test.sxw")

' supplies file:///C:/doc/test.sxw

MsgBox ConvertFromUrl("file:///C:/doc/test.sxw")

' supplies (under Windows) c:\doc\test.sxw

The example converts a local file name into a URL and displays it in a message box. It then
converts a URL into a local file name and also displays this.

The Internet Standard RFC 1738, upon which this is based, permits use of the 0-9, a-z, and A-Z
characters. All other characters are inserted as escape coding in the URLs. To do this, they are
converted into their hexadecimal value in the ISO 8859-1 (ISO-Latin) set of characters and are

preceded by a percent sign. A space in a local file name therefore, for example, becomes a %20 in
the URL.

XML File Format

Since Version 6.0, StarOffice provides an XML-based file format. Through the use of XML, the user
has the option of also opening and editing files in other programs.

Compression of Files

Since XML is based on standard text files, the resultant files are usually very large. StarOffice
therefore compresses the files and saves them as a ZIP file.

74 StarOffice™ 6.0 Basic Programmer's Guide

By means of a storeAsURL method option, the user can save the original XML files directly. See
storeAsURL Method Options on page 79.

Creating, Opening and Importing Documents
Documents are opened, imported and created using the method

StarDesktop.loadComponentFromURL(URL, Frame, _

SearchFlags, FileProperties)

The first parameter of loadComponentFromURL specifies the URL of the associated file.

As the second parameter, loadComponentFromURL expects a name for the frame object of the

window that StarOffice creates internally for its administration. The predefined _blank name is
usually specified here, and this ensures that StarOffice creates a new window. Alternatively,

_hidden can also be specified, and this ensures that the corresponding document is loaded but
remains invisible.

Using these parameters, the user can open a StarOffice document, since place holders (dummy
values) can be assigned to the last two parameters:

Dim Doc As Object

Dim Url As String

Dim Dummy()

Url = "file:///C:/test.sxw"

Doc = StarDesktop.loadComponentFromURL(Url, "_blank", 0, Dummy())

The preceding call opens the text.sxw file and displays this in a new window.

Any number of documents can be opened in this way in StarOffice Basic and then edited using the
returned document objects.

StarDesktop.loadComponentFromURL supersedes the Documents.Add and Documents.Open
methods from the old StarOffice API.

Replacing the Content of the Document Window

The named _blank and _hidden values for the Frame parameter ensure that StarOffice creates a

new window for every call from loadComponentFromURL. In some situations, it is useful to
replace the content of an existing window. In this case, the frame object of the window should
contain an explicit name. Note that this name must not begin with an underscore. Furthermore, the

SearchFlags parameter must be set so that the corresponding framework is created, if it does not

already exist. The corresponding constant for SearchFlags is:

SearchFlags = com.sun.star.frame.FrameSearchFlag.CREATE + _

com.sun.star.frame.FrameSearchFlag.ALL

Chapter 5 Working with StarOffice Documents 75

The following example shows how the content of an opened window can be replaced with the help

of the frame parameter and SearchFlags:

Dim Doc As Object

Dim Dummy()

Dim Url As String

Dim SearchFlags As Long

SearchFlags = com.sun.star.frame.FrameSearchFlag.CREATE + _

com.sun.star.frame.FrameSearchFlag.ALL

Url = "file:///C:/test.sxw"

Doc = StarDesktop.loadComponentFromURL(Url, "MyFrame", _

SearchFlags, Dummy)

MsgBox "Press OK to display the second document."

Url = "file:///C:/test2.sxw"

Doc = StarDesktop.loadComponentFromURL(Url, "MyFrame", _

SearchFlags, Dummy)

The example first opens the test.sxw file in a new window with the frame name of MyFrame.
Once the message box has been confirmed, it replaces the content of the window with the

test2.sxw file.

loadComponentFromURL Method Options

The fourth parameter of the loadComponentFromURL function is a PropertyValue data field.
which provides StarOffice with various options for opening and creating documents. The data field

must provide a PropertyValue structure for each option in which the name of the option is
saved as a string as well as the associated value.

loadComponentFromURL supports the following options:

 AsTemplate (Boolean) – if true, loads a new, untitled document from the given URL. If is
false, template files are loaded for editing.

 CharacterSet (String) – defines which set of characters a document is based on.

 FilterName (String) – specifies a special filter for the loadComponentFromURL function.
The filter names available are defined in the \share\config\registry\instance\org\
openoffice\office\TypeDetection.xml file.

 FilterOptions (String) – defines additional options for filters.

 JumpMark (String) – once a document has been opened, jumps to the position defined in
JumpMark.

 Password (String) – transfers a password for a protected file.

 ReadOnly (Boolean) – loads a read-only document.

The following example shows how a text file separated by a comma in StarOffice Calc can be

opened using the FilterName option.

76 StarOffice™ 6.0 Basic Programmer's Guide

Dim Doc As Object

Dim FileProperties(0) As New com.sun.star.beans.PropertyValue

Dim Url As String

Url = "file:///C:/csv.doc"

FileProperties(0).Name = "FilterName"

FileProperties(0).Value ="scalc: Text - txt - csv (StarOffice Calc)"

Doc = StarDesktop.loadComponentFromURL(Url, "_blank", 0, FileProperties())

The FileProperties data field covers precisely one value because it records one option.

The Filtername property defines whether StarOffice uses a StarOffice Calc text filter to open
files.

Creating New Documents

StarOffice automatically creates a new document if the document specified in the URL is a
template.

Alternatively, if only an empty document without any adaptation is needed, a

private:factory-URL can be specified:

Dim Dummy()

Dim Url As String

Dim Doc As Object

Url = "private:factory/swriter"

Doc = StarDesktop.loadComponentFromURL(Url, "_blank", 0, Dummy())

The call creates an empty StarOffice writer document.

Document Objects
The loadComponentFromURL function introduced in the previous section returns a document

object. This supports the com.sun.star.document.OfficeDocument service, which in turn
provides two central interfaces:

 the com.sun.star.frame.XStorable interface, which is responsible for saving documents
and

 the com.sun.star.view.XPrintable interface, which contains the methods for printing
documents.

When changing over to StarOffice 6.0, you will find that the functional scope of the document objects has
remained the same for the most part. The document objects, for example, still provide methods for saving
and printing documents. The names and parameters of the methods have, however, changed.

Saving and Exporting Documents

StarOffice documents are saved directly through the document object. The store method of the

com.sun.star.frame.XStorable interface is available for this purpose:

Chapter 5 Working with StarOffice Documents 77

Doc.store()

This call functions provided that the document has already been assigned a memory space. This is

not the case for new documents. In this instance, the storeAsURL method is used. This method is

also defined in com.sun.star.frame.XStorable and can be used to define the location of the
document:

Dim URL As String

Dim Dummy()

Url = "file:///C:/test3.sxw"

Doc.storeAsURL(URL, Dummy())

In addition to the preceding methods, com.sun.star.frame.XStorable also provides
some help methods which are useful when saving documents. These are:

 hasLocation() – specifies whether the document has already been assigned a URL.

 isReadonly() - specifies whether a document has read-only protection.

 isModified() - specifies whether a document has been modified since it was last saved.

The code for saving a document can be extended by these options so that the document is only
saved if the object has actually been modified and the file name is only queried if it is actually
needed:

If (Doc.isModified) Then

If (Doc.hasLocation And (Not Doc.isReadOnly)) Then

Doc.store()

Else

Doc.storeAsURL(URL, Dummy())

End If

End If

The example first checks whether the relevant document has been modified since it was last saved.
It only continues with the saving process if this is the case. If the document has already been
assigned a URL and is not a read-only document, it is saved under the existing URL. If it does not
have a URL or was opened in its read-only status, it is saved under a new URL.

78 StarOffice™ 6.0 Basic Programmer's Guide

storeAsURL Method Options

As with the loadComponentFromURL method, some options can also be specified in the form of a

PropertyValue data field using the storeAsURL method. These determine the procedure

StarOffice uses when saving a document. storeAsURL provides the following options:

 CharacterSet (String) – defines which set of characters a document is based on.

 FilterName (String) – specifies a special filter for the loadComponentFromURL function.
The filter names available are defined in the \share\config\registry\instance\org\
openoffice\office\TypeDetection.xml file.

 FilterOptions (String) – defines additional options for filters.

 Overwrite (Boolean) – allows a file which already exists to be overwritten without a query.

 Password (String) – transfers the password for a protected file.

 Unpacked (Boolean) – saves the document (not compressed) in sub-directories.

The following example shows how the Overwrite option can be used in conjunction with

storeAsURL:

Dim Doc As Object

Dim FileProperties(0) As New com.sun.star.beans.PropertyValue

Dim Url As String

' ... Initialize Doc

Url = "file:///c:/test3.sxw"

FileProperties(0).Name = "Overwrite"

FileProperties(0).Value = True

Doc.storeAsURL(sUrl, mFileProperties())

The example then saves Doc under the specified file name if a file already exists under the name.

Printing Documents

Similar to saving, documents are printed out directly by means of the document object. The Print

method of the com.sun.star.view.Xprintable interface is provided for this purpose.

In its simplest form, the print call is:

Dim Dummy()

Doc.print(Dummy())

As in the case of the loadComponentFromURL method, the Dummy parameter is a

PropertyValue data field through which StarOffice can specify several options for printing.

Chapter 5 Working with StarOffice Documents 79

The options of the print method

The print method expects a PropertyValue data field as a parameter, which reflects the
settings of the print dialog of StarOffice:

 CopyCount (Integer) – specifies the number of copies to be printed.

 FileName (String) – prints the document in the specified file.

 Collate (Boolean) – advises the printer to collate the pages of the copies.

 Sort (Boolean) – sorts the pages when printing out several copies (CopyCount > 1).

 Pages (String) – contains the list of the pages to be printed (syntax as specified in print
dialog).

The following example shows how several pages of a document can be printed out using the

Pages option:

Dim Doc As Object

Dim PrintProperties(0) As New com.sun.star.beans.PropertyValue

PrintProperties(0).Name="Pages"

PrintProperties(0).Value="1-3; 7; 9"

Doc.print(PrintProperties())

Printer selection and settings

The com.sun.star.view.XPrintable interface provides the Printer property, which selects

the printer. This property receives a PropertyValue data field with the following settings:

 Name (String) – specifies the name of printer.

 PaperOrientation (Enum) – specifies the paper orientation

(com.sun.star.view.PaperOrientation.PORTRAIT value for portrait format,

com.sun.star.view.PaperOrientation.LANDSCAPE for landscape format).

 PaperFormat (Enum) – specifies the paper format (for example,
com.sun.star.view.PaperFormat.A4 for DIN A4 or

com.sun.star.view.PaperFormat.Letter for US letters).

 PaperSize (Size) – specifies the paper size in hundredths of a millimeter.

80 StarOffice™ 6.0 Basic Programmer's Guide

The following example shows how a printer can be changed and the paper size set with the help of

the Printer property.

Dim Doc As Object

Dim PrinterProperties(1) As New com.sun.star.beans.PropertyValue

Dim PaperSize As New com.sun.star.awt.Size

PaperSize.Width = 20000 ' corresponds to 20 cm

PaperSize.Height = 20000 ' corresponds to 20 cm

PrinterProperties (0).Name="Name"

PrinterProperties (0).Value="My HP Laserjet"

PrinterProperties (1).Name="PaperSize"

PrinterProperties (1).Value=PaperSize

Doc.Printer = PrinterProperties()

The example defines an object named PaperSize with the com.sun.star.awt.Size type.
This is needed to specify the paper size. Furthermore, it creates a data field for two

PropertyValue entries named PrinterProperties. This data field is then initialized with the

values to be set and assigned the Printer property. From the standpoint of UNO, the printer is
not a real property but an imitated one.

Chapter 5 Working with StarOffice Documents 81

Templates
Templates are named lists containing formatting attributes. They move through all applications of
StarOffice and help to significantly simplify formatting. If the user changes one of the attributes of
a template, then StarOffice automatically adjusts all document sections depending on the attribute.
The user can therefore, for example, change the font type of all level one headers by means of a
central modification in the document. Depending on the relevant document types, StarOffice
recognizes a whole range of different types of template.

StarOffice Writer supports

 character templates,

 paragraph templates,

 frame templates,

 page templates

 numbering templates

StarOffice Calc supports

 cell template

 page templates

StarOffice Impress supports

 character element templates

 presentation templates

In StarOffice terminology, the different types of templates are called StyleFamilies in

accordance with the com.sun.star.style.StyleFamily service on which they are based.

The StyleFamilies are accessed by means of the document object:

Dim Doc As Object

Dim Sheet As Object

Dim StyleFamilies As Object

Dim CellStyles As Object

Doc = StarDesktop.CurrentComponent

StyleFamilies = Doc.StyleFamilies

CellStyles = StyleFamilies.getByName("CellStyles")

The example uses the StyleFamilies property of a spreadsheet document to establish a list
containing all available cell templates.

82 StarOffice™ 6.0 Basic Programmer's Guide

The individual templates can be accessed directly by means of an index:

Dim Doc As Object

Dim Sheet As Object

Dim StyleFamilies As Object

Dim CellStyles As Object

Dim CellStyle As Object

Dim I As Integer

Doc = StarDesktop.CurrentComponent

StyleFamilies = Doc.StyleFamilies

CellStyles = StyleFamilies.getByName("CellStyles")

For I = 0 To CellStyles.Count - 1

CellStyle = CellStyles(I)

MsgBox CellStyle.Name

Next I

The loop added since the previous example displays the names of all cell templates one after
another in a message box.

Details about various formatting options
Each type of template provides a whole range of individual formatting properties. Here is an
overview of the most important formatting properties and the points at which they are explained:

 Character properties, Chapter 6, Text Documents,

com.sun.star.style.CharacterProperties service

 Paragraph properties, Chapter 6, Text Documents,

com.sun.star.text.Paragraph service

 Cell properties, Chapter 7, Spreadsheet Documents,

com.sun.star.table.CellProperties service

 Page properties, Chapter 7, Spreadsheet Documents,

com.sun.star.style.PageStyle service

 Character element properties, Chapter 7, Spreadsheet Documents,
Various services

The format properties are by no means restricted to the applications in which these are explained,
but instead can be used universally. For example, most of the page properties described in Chapter
7 can therefore be used not only in StarOffice Calc, but also in StarOffice Writer.

More information about working with templates can be found in the Default values for character and
paragraph properties section in Chapter 6, Text Documents.

Chapter 5 Working with StarOffice Documents 83

84 StarOffice™ 6.0 Basic Programmer's Guide

6 Text Documents
In addition to pure strings, text documents also contain formatting information. These may appear
at any point in the text. The structure is further complicated by tables. These include not only
single-dimensional strings, but also two-dimensional fields. Most word processing programs now
finally provide the option of placing drawing objects, text frames and other objects within a text.
These may be outside the flow of text and can be positioned anywhere on the page.

This chapter presents the central interfaces and services of text documents. The first section deals
with the anatomy of text documents and concentrates on how a StarOffice Basic program can be
used to take iterative steps through a StarOffice document. It focuses on paragraphs, paragraph
portions and their formatting.

The second section focuses on efficiently working with text documents. For this purpose, StarOffice

provides several help objects, such as the TextCursor object, which extend beyond those
specified in the first section.

The third section moves beyond work with texts. It concentrates on tables, text frames, text fields,
bookmarks, content directories and more.

Information about how to create, open, save and print documents is described in Chapter 5,
because it can be used not only for text documents, but also for other types of document.

The Structure of Text Documents
A text document can essentially contain four types of information:

 the actual text

 templates for formatting characters, paragraphs, and pages

 non-text elements such as tables, graphics and drawing objects

 global settings for the text document

This section concentrates especially on the text and associated formatting options.

The design of the StarOffice 6.0 API for StarOffice Writer differs from that of the previous version. The old

API version concentrated on work with the Selection object, which was heavily oriented towards the idea
of the user interface for end users, which focused on mouse-controlled highlighting work.

The StarOffice 6.0 API has replaced these connections between user interface and programmer interface.
The programmer therefore has parallel access to all parts of an application and can work with objects from

different sub-sections of a document at the same time. The old Selection object is no longer available.

85

CHAPTER 6

Paragraphs and Paragraph Portions
The core of a text document consists of a sequence of paragraphs. These are neither named nor
indexed and there is therefore no possible way of directly accessing individual paragraphs. The

paragraphs can however be sequentially traversed with the help of the Enumeration object
described in Chapter 4. This allows the paragraphs to be edited.

When working with the Enumeration object, one special scenario should, however, be noted:
it not only returns paragraphs, but also tables (strictly speaking, in StarOffice Writer, a table is a
special type of paragraph). Before accessing a returned object, you should therefore check whether

the returned object supports the com.sun.star.text.Paragraph service for paragraphs or the

com.sun.star.text.TextTable service for tables.

The following example traverses the contents of a text document in a loop and uses a message in
each instance to inform the user whether the object in question is a paragraph or table.

Dim Doc As Object

Dim Enum As Object

Dim TextElement As Object

' Create document object

Doc = StarDesktop.CurrentComponent

' Create enumeration object

Enum = Doc.Text.createEnumeration

' loop over all text elements

While Enum.hasMoreElements

TextElement = Enum.nextElement

If TextElement.supportsService("com.sun.star.text.TextTable") Then

MsgBox "The current block contains a table."

End If

If TextElement.supportsService("com.sun.star.text.Paragraph") Then

MsgBox "The current block contains a paragraph."

End If

Wend

The example creates a Doc document object which references the current StarOffice document.

With the aid of Doc, the example then creates an Enumeration object that traverses through the
individual parts of the text (paragraphs and tables) and assigns the current element to

TextElement object. The example uses the supportsService method to check whether the

TextElement is a paragraph or a table.

Paragraphs

The com.sun.star.text.Paragraph service grants access to the content of a paragraph. The

text in the paragraph can be retrieved and modified using the String property:

Dim Doc As Object

Dim Enum As Object

Dim TextElement As Object

86 StarOffice™ 6.0 Basic Programmer's Guide

Doc = StarDesktop.CurrentComponent

Enum = Doc.Text.createEnumeration

While Enum.hasMoreElements

TextElement = Enum.nextElement

If TextElement.supportsService("com.sun.star.text.Paragraph") Then

TextElement.String = Replace(TextElement.String, "you", "U")

TextElement.String = Replace(TextElement.String, "too", "2")

TextElement.String = Replace(TextElement.String, "for", "4")

End If

Wend

The example opens the current text document and passes through it with the help of the

Enumeration object. It uses the TextElement.String property in all paragraphs to access the

relevant paragraphs and replaces the you, too and for strings with the U, 2 and 4 characters.

The Replace function used for replacing does not fall within the standard linguistic scope of
StarOffice Basic. This is an instance of the example function described in Chapter 3 in the Search and
Replace section.

The content of the procedure described here for accessing the paragraphs of a text is comparable with the
Paragraphs listing used in VBA, which is provided in the Range and Document objects available there.
Whereas in VBA the paragraphs are accessed by their number (for example, by the Paragraph(1) call),
in StarOffice Basic, the Enumeration object described previously should be used.

There is no direct counterpart in StarOffice Basic for the Characters, Sentences and Words lists
provided in VBA. You do, however, have the option of switching to a TextCursor which allows for
navigation at the level of characters, sentences and words (refer to The TextCursor).

Paragraph Portions

The previous example may change the text as requested, but it may sometimes also destroy the
formatting.

This is because a paragraph in turn consists of individual sub-objects. Each of these sub-objects
contains its own formatting information. If the center of a paragraph, for example, contains a word
printed in bold, then it will be represented in StarOffice by three paragraph portions: the portion
before the bold type, then the word in bold, and finally the portion after the bold type, which is
again depicted as normal.

If the text of the paragraph is now changed using the paragraph’s String property, then
StarOffice first deletes the old paragraph portions and inserts a new paragraph portion. The
formatting of the previous sections is then lost.

Chapter 6 Text Documents 87

To prevent this effect, the user can access the associated paragraph portions rather than the entire

paragraph. Paragraphs provide their own Enumeration object for this purpose. The following
example shows a double loop which passes over all paragraphs of a text document and the
paragraph portions they contain and applies the replacement processes from the previous example:

Dim Doc As Object

Dim Enum1 As Object

Dim Enum2 As Object

Dim TextElement As Object

Dim TextPortion As Object

Doc = StarDesktop.CurrentComponent

Enum1 = Doc.Text.createEnumeration

' loop over all paragraphs

While Enum1.hasMoreElements

TextElement = Enum1.nextElement

If TextElement.supportsService("com.sun.star.text.Paragraph") Then

Enum2 = TextElement.createEnumeration

' loop over all sub-paragraphs

While Enum2.hasMoreElements

TextPortion = Enum2.nextElement

MsgBox "'" & TextPortion.String & "'"

TextPortion.String = Replace(TextPortion.String, "you", "U")

TextPortion.String = Replace(TextPortion.String, "too", "2")

TextPortion.String = Replace(TextPortion.String, "for", "4")

Wend

End If

Wend

The example runs through a text document in a double loop. The outer loop refers to the
paragraphs of the text. The inner loop processes the paragraph portions in these paragraphs. The

example code modifies the content in each of these paragraph portions using the String property
of the string. as is the case in the previous example for paragraphs. Since however, the paragraph
portions are edited directly, their formatting information is retained when replacing the string.

Formatting

There are various ways of formatting text. The easiest way is to assign the format properties
directly to the text sequence. This is called direct formatting. Direct formatting is used in particular
with short documents because the formats can be assigned by the user with the mouse. You can,
for example, highlight a certain word within a text using bold type or center a line.

In addition to direct formatting, you can also format text using templates. This is called indirect
formatting. With indirect formatting, the user assigns a pre-defined template to the relevant text
portion. If the layout of the text is changed at a later date, the user only needs to change the
template. StarOffice then changes the way in which all text portions which use this template are
depicted.

88 StarOffice™ 6.0 Basic Programmer's Guide

In VBA, the formatting properties of an object are usually spread over a range of sub-objects (for example,
Range.Font, Range.Borders, Range.Shading, Range.ParagraphFormat). The properties are accessed
by means of cascading expressions (for example, Range.Font.AllCaps). In StarOffice Basic, the formatting
properties on the other hand are available directly, using the relevant objects (TextCursor, Paragraph, and
so on). You will find an overview of the character and paragraph properties available in StarOffice in the following
two sections.

In the old StarOffice API, a text was essentially formatted using the Selection object and its subordinate
objects (for example, Selection.Font, Selection.Paragraph and Selection.Border). In the new
API, the formatting properties can be found in each object (Paragraph, TextCursor, and so on) and can
be applied directly. A list of the character and paragraph properties available can be found in the following
paragraphs.

Character Properties

Those format properties that refer to individual characters are described as character properties.
These include bold type and the font type. Objects that allow character properties to be set have to

support the com.sun.star.style.CharacterProperties service. StarOffice recognizes a
whole range of services that support this service. These include the previously described

com.sun.star.text.Paragraph services for paragraphs as well as the

com.sun.star.text.TextPortion services for paragraph portions.

The com.sun.star.style.CharacterProperties service does not provide any interfaces,
but instead offers a range of properties through which character properties can be defined and
called. A complete list of all character properties can be found in the StarOffice API reference. The
following list describes the most important properties:

 CharFontName (String) – name of font type selected.

 CharColor (Long) – text color.

 CharHeight (Float) – character height in points (pt).

 CharUnderline (Constant group) – type of underscore (constants in accordance with

com.sun.star.awt.FontUnderline).

 CharWeight (Constant group) – font weight(constants in accordance with

com.sun.star.awt.FontWeight).

 CharBackColor (Long) – background color.

 CharKeepTogether (Boolean) – suppression of automatic line break.

 CharStyleName (String) – name of character template.

Paragraph Properties

Formatting information that does not refer to individual characters, but to the entire paragraph is
considered to be a paragraph property. This includes the distance of the paragraph from the edge

Chapter 6 Text Documents 89

of the page as well as line spacing. The paragraph properties are available through the

com.sun.star.style.ParagraphProperties service.

Even the paragraph properties are available in various objects. All objects that support the

com.sun.star.text.Paragraph service also provide support for the paragraph properties in

com.sun.star.style.ParagraphProperties.

A complete list of the paragraph properties can be found in the StarOffice API reference. The most
common paragraph properties are:

 ParaAdjust (enum) – vertical text orientation (constants in accordance with

com.sun.star.style.ParagraphAdjust).

 ParaLineSpacing (struct) – line spacing (structure in accordance with

com.sun.star.style.LineSpacing).

 ParaBackColor (Long) – background color.

 ParaLeftMargin (Long) – left margin in 100ths of a millimeter.

 ParaRightMargin (Long) – right margin in 100ths of a millimeter.

 ParaTopMargin (Long) – top margin in 100ths of a millimeter.

 ParaBottomMargin (Long) – bottom margin in 100ths of a millimeter.

 ParaTabStops (Array of struct) – type and position of tabs (array with structures of

the Typs com.sun.star.style.TabStop).

 ParaStyleName (String) – name of the paragraph template.

90 StarOffice™ 6.0 Basic Programmer's Guide

Example: simple HTML export

The following example demonstrates how to work with formatting information. It iterates through
a text document and creates a simple HTML file. Each paragraph is recorded in its own HTML

element <P> for this purpose. Paragraph portions displayed in bold type are marked using a
HTML element when exporting.

Dim FileNo As Integer, Filename As String, CurLine As String

Dim Doc As Object

Dim Enum1 As Object, Enum2 As Object

Dim TextElement As Object, TextPortion As Object

Filename = "c:\text.html"

FileNo = Freefile

Open Filename For Output As #FileNo

Print #FileNo, "<HTML><BODY>"

Doc = StarDesktop.CurrentComponent

Enum1 = Doc.Text.createEnumeration

' loop over all paragraphs

While Enum1.hasMoreElements

TextElement = Enum1.nextElement

If TextElement.supportsService("com.sun.star.text.Paragraph") Then

Enum2 = TextElement.createEnumeration

CurLine = "<P>"

' loop over all paragraph portions

While Enum2.hasMoreElements

TextPortion = Enum2.nextElement

If TextPortion.CharWeight = com.sun.star.awt.FontWeight.BOLD THEN

CurLine = CurLine & "" & TextPortion.String & ""

Else

CurLine = CurLine & TextPortion.String

End If

Wend

' output the line

CurLine = CurLine & "</P>"

Print #FileNo, CurLine

End If

Wend

' write HTML footer

Print #FileNo, "</BODY></HTML>"

Close #FileNo

The basic structure of the example is oriented towards the examples for running though the
paragraph portions of a text already discussed previously. The functions for writing the HTML file,
as well as a test code that checks the font weight of the corresponding text portions and provides
paragraph portions in bold type with a corresponding HTML tag, have been added.

Chapter 6 Text Documents 91

Default values for character and paragraph properties

Direct formatting always takes priority over indirect formatting. In other words, formatting using
templates is assigned a lower priority than direct formatting in a text.

Establishing whether a section of a document has been directly or indirectly formatted is not easy.
The symbol bars provided by StarOffice show the common text properties such as font type,
weight and size. However, whether the corresponding settings are based on template or direct
formatting in the text is still unclear.

StarOffice Basic provides the getPropertyState method, with which programmers can check
how a certain property was formatted. As a parameter, this takes the name of the property and
returns a constant that provides information about the origin of the formatting. The following

responses, which are defined in the com.sun.star.beans.PropertyState enumeration, are
possible:

 com.sun.star.beans.PropertyState.DIRECT_VALUE – the property is defined directly
in the text (direct formatting),

 com.sun.star.beans.PropertyState.DEFAULT_VALUE – the property is defined by a
template (indirect formatting)

 com.sun.star.beans.PropertyState.AMBIGUOUS_VALUE – the property is unclear.
This status arises, for example, when querying the bold type property of a paragraph, which
includes both words depicted in bold and words depicted in normal font.

The following example shows how format properties can be edited in StarOffice. It searches
through a text for paragraph portions which have been depicted as bold type using direct
formatting. If it encounters a corresponding paragraph portion, it deletes the direct formatting

using the setPropertyToDefault method and assigns a MyBold character template to the
corresponding paragraph portion.

92 StarOffice™ 6.0 Basic Programmer's Guide

Dim Doc As Object

Dim Enum1 As Object

Dim Enum2 As Object

Dim TextElement As Object

Dim TextPortion As Object

Doc = StarDesktop.CurrentComponent

Enum1 = Doc.Text.createEnumeration

' loop over all paragraphs

While Enum1.hasMoreElements

TextElement = Enum1.nextElement

If TextElement.supportsService("com.sun.star.text.Paragraph") Then

Enum2 = TextElement.createEnumeration

' loop over all paragraph portions

While Enum2.hasMoreElements

TextPortion = Enum2.nextElement

If TextPortion.CharWeight = _

 com.sun.star.awt.FontWeight.BOLD AND _

 TextPortion.getPropertyState("CharWeight") = _

 com.sun.star.beans.PropertyState.DIRECT_VALUE Then

TextPortion.setPropertyToDefault("CharWeight")

TextPortion.CharStyleName = "MyBold"

End If

Wend

End If

Wend

Chapter 6 Text Documents 93

Editing Text Documents
The previous section has already discussed a whole range of options for editing text documents,

focusing on the com.sun.star.text.TextPortion and com.sun.star.text.Paragraph
services,which grant access to paragraph portions as well as paragraphs. These services are
appropriate for applications in which the content of a text is to be edited in one pass through a
loop. However, this is not sufficient for many problems. StarOffice provides the

com.sun.star.text.TextCursor service for more complicated tasks, including navigating
backward within a document or navigating based on sentences ad words rather than

TextPortions.

The TextCursor
A TextCursor in the StarOffice API is comparable with the visible cursor used in a StarOffice
document. It marks a certain point within a text document and can be navigated in various

directions through the use of commands. The TextCursor objects available in StarOffice Basic
should not, however, be confused with the visible cursor. These are two very different things.

Warning! Terminology differs from that used in VBA: In terms of scope of function, the Range object from
VBA can be compared with the TextCursor object in StarOffice and not – as the name possibly suggests
– with the Range object in StarOffice.

The TextCursor object in StarOffice, for example, provides methods for navigating and changing text which
are included in the Range object in VBA (for example, MoveStart, MoveEnd, InsertBefore,
InsertAfter). The corresponding counterparts of the TextCursor object in StarOffice are described in
the following sections.

Navigating within a Text

The TextCursor object in StarOffice Basic acts independently from the visible cursor in a text

document. A program-controlled position change of a TextCursor object has no impact

whatsoever on the visible cursor. Several TextCursor objects can even be opened for the same
document and used in various positions, which are independent of one another.

A TextCursor object is created using the createTextCursor call:

Dim Doc As Object

Dim Cursor As Object

Doc = StarDesktop.CurrentComponent

Cursor = TextDocument.Text.createTextCursor()

The Cursor object created in this way supports the com.sun.star.text.TextCursor service,
which in turn provides a whole range of methods for navigating within text documents. The

following example first moves the TextCursor ten characters to the left and then three characters
to the right:

Cursor.goLeft(10, False)

Cursor.goRight(3, False)

94 StarOffice™ 6.0 Basic Programmer's Guide

A TextCursor can highlight a complete area. This can be compared with highlighting a point in

the text using the mouse. The False parameter in the previous function call specifies whether the

area passed over with the cursor movement is highlightet. For example, the TextCursor in the
following example

Cursor.goLeft(10, False)

Cursor.goRight(3, True)

first moves ten characters to the right without highlighting, and then moves back three characters

and highlights this. The area highlighted by the TextCursor therefore begins after the seventh
character in the text and ends after the tenth character.

Here are the central methods that the com.sun.star.text.TextCursor service provides for
navigation:

 goLeft (Count, Expand) – jumps Count characters to the left.

 goRight (Count, Expand) – jumps Count characters to the right.

 gotoStart (Expand) – jumps to the start of the text document.

 gotoEnd (Expand) – jumps to the end of the text document.

 gotoRange (TextRange, Expand) – jumps to the specified TextRange-Objekt.

 gotoStartOfWord (Expand) – jumps to the start of the current word.

 gotoEndOfWord (Expand) – jumps to the end of the current word.

 gotoNextWord (Expand) – jumps to the start of the next word.

 gotoPreviousWord (Expand) – jumps to the start of the previous word.

 isStartOfWord () - returns True if the TextCursor is at the start of a word.

 isEndOfWord () - returns True if the TextCursor is at the end of a word.

 gotoStartOfSentence (Expand) – jumps to the start of the current sentence.

 gotoEndOfSentence (Expand) – jumps to the end of the current sentence.

 gotoNextSentence (Expand) – jumps to the start of the next sentence.

 gotoPreviousSentence (Expand) – jumps to the start of the previous sentence.

 isStartOfSentence () - returns True if the TextCursor is at the start of a sentence.

 isEndOfSentence () - returns True if the TextCursor is at the end of a sentence.

 gotoStartOfParagraph (Expand) – jumps to the start of the current paragraph.

 gotoEndOfParagraph (Expand) – jumps to the end of the current paragraph.

 gotoNextParagraph (Expand) – jumps to the start of the next paragraph.

 gotoPreviousParagraph (Expand) – jumps to the start of the previous paragraph.

 isStartOfParagraph () – returns True if the TextCursor is at the start of a paragraph.

 isEndOfParagraph () – returns True if the TextCursor is at the end of a paragraph.

Chapter 6 Text Documents 95

The text is divided into sentences on the basis of sentence symbols. Periods are, for example,
interpreted as symbols indicating the end of sentences.

The Expand parameter is a Boolean value which specifies whether the area passed over during
navigation is to be highlighted. All navigation methods furthermore return a parameter which
specifies whether the navigation was successful or whether the action was terminated for lack of
text.

The following is a list of several methods for editing highlighted areas using a TextCursor and

which also support the com.sun.star.text.TextCursor service:

 collapseToStart () – resets the highlighting and positions the TextCursor at the start of
the previously highlighted area.

 collapseToEnd () – resets the highlighting and positions the TextCursor at the end of the
previously highlighted area.

 isCollapsed () – returns True if the TextCursor does not cover any highlighting at present.

Formatting Text with TextCursor

The com.sun.star.text.TextCursor service supports all the character and paragraph
properties that were presented at the start of this Chapter.

The following example shows how these can be used in conjunction with a TextCursor.
It passes through a complete document and formats the first word of every sentence in bold type.

Dim Doc As Object

Dim Cursor As Object

Dim Proceed As Boolean

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor

Do

Cursor.gotoEndOfWord(True)

Cursor.CharWeight = com.sun.star.awt.FontWeight.BOLD

Proceed = Cursor.gotoNextSentence(False)

Cursor.gotoNextWord(False)

Loop While Proceed

The example first creates a document object for the text that has just been opened. Then it iterates
through the entire text, sentence by sentence, and highlights each of the first words and formats
this in bold.

96 StarOffice™ 6.0 Basic Programmer's Guide

Retrieving and Modifying Text Contents

If a TextCursor contains a highlighted area, then this text is available by means of the String

property of the TextCursor object. The following example uses the String property to display
the first words of a sentence in a message box:

Dim Doc As Object

Dim Cursor As Object

Dim Proceed As Boolean

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor

Do

Cursor.gotoEndOfWord(True)

MsgBox Cursor.String

Proceed = Cursor.gotoNextSentence(False)

Cursor.gotoNextWord(False)

Loop While Proceed

The first word of each sentence can be modified in the same way using the String property:

Dim Doc As Object

Dim Cursor As Object

Dim Proceed As Boolean

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor

Do

Cursor.gotoEndOfWord(True)

Cursor.String = "Ups"

Proceed = Cursor.gotoNextSentence(False)

Cursor.gotoNextWord(False)

Loop While Proceed

If the TextCursor contains a highlighted area, an assignment to the String property replaces
this with the new text. If there is no highlighted area, the text is inserted at the present

TextCursor position.

Chapter 6 Text Documents 97

Inserting Control Codes

In some situations, it is not the actual text of a document, but rather its structure that needs
modifying. StarOffice provides control codes for this purpose. These are inserted in the text and
influence its structure. The control codes are defined in the

com.sun.star.text.ControlCharacter group of constants. The following control codes are
available in StarOffice:

 PARAGRAPH_BREAK – paragraph break.

 LINE_BREAK – line break within a paragraph.

 SOFT_HYPHEN – possible point for syllabification.

 HARD_HYPHEN – obligatory point for syllabification.

 HARD_SPACE – protected space that is not spread out or compressed in justified text.

To insert the control codes, you need not only the cursor but also the associated text document
objects. The following example inserts a paragraph after the 20th character of a text:

Dim Doc As Object

Dim Cursor As Object

Dim Proceed As Boolean

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor

Cursor.goRight(20, False)

Doc.Text.insertControlCharacter(Cursor, _

com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, False)

The False parameter in the call of the insertControlCharacter method ensures that the area

currently highlighted by the TextCursor remains after the insert operation. If the True

parameter is passed here, then insertControlCharacter replaces the current text.

Searching for Text Portions
In many instances, it is the case that a text is to be searched for a particular term and the
corresponding point needs to be edited. All StarOffice documents provide a special interface for
this purpose, and this interface always functions in accordance with the same principle: Before a

search process, what is commonly referred to as a SearchDescriptor must first be created. This

defines what StarOffice searches for in a document. A SearchDescriptor is an object which

supports the com.sun.star.util.SearchDescriptor service and can be created by means of

the createSearchDescriptor method of a document:

Dim SearchDesc As Object

SearchDesc = Doc.createSearchDescriptor

Once the SearchDescriptor has been created, it receives the text to be searched for:

SearchDesc.searchString="any text"

98 StarOffice™ 6.0 Basic Programmer's Guide

In terms of its function, the SearchDescriptor is best compared with the search dialog from
StarOffice. In a similar way to the search window, the settings needed for a search can be set in the

SearchDescriptor object.

The properties are provided by the com.sun.star.util.SearchDescriptor service:

 SearchBackwards (Boolean) - searches through the text backward rather than forward.

 SearchCaseSensitive (Boolean) - takes uppercase and lowercase characters into
consideration during the search.

 SearchRegularExpression (Boolean) - treats the search expression like a regular
expression.

 SearchStyles (Boolean) - searches through the text for the specified paragraph template.

 SearchWords (Boolean) - only searches for complete words.

The StarOffice SearchSimilarity (or “fuzzy match”) function is also available in StarOffice
Basic. With this function, StarOffice searches for an expression that may be similar to but not
exactly the same as the search expression. The number of additional, deleted and modified
characters for these expressions can be defined individually. Here are the associated properties of

the com.sun.star.util.SearchDescriptor service:

 SearchSimilarity (Boolean) - performs a similarity search.

 SearchSimilarityAdd (Short) - number of characters which may be added for a
similarity search.

 SearchSimilarityExchange (Short) - number of characters which may be replaced as
part of a similarity search.

 SearchSimilarityRemove (Short) - number of characters which may be removed as part
of a similarity search.

 SearchSimilarityRelax (Boolean) - takes all deviation rules into consideration at the
same time for the search expression.

Once the SearchDescriptor has been prepared as requested, it can be applied to the text

document. The StarOffice documents provide the findFirst and findNext methods for this
purpose:

Found = Doc.findFirst (SearchDesc)

Do While Found

' Suchergebnis bearbeiten

Found = Doc.findNext(Found.End, Search)

Loop

The example finds all matches in a loop and returns a TextRange object, which refers to the found
text passage.

Chapter 6 Text Documents 99

Example: Similarity Search

This example shows how a text can be searched for the word "turnover" and the results formatted
in bold type. A similarity search is used so that not only the word “turnover”, but also the plural
form "turnovers" and declinations such as "turnover’s" are found. The found expressions differ by
up to two letters from the search expression:

Dim SearchDesc As Object

Dim Doc As Object

Doc = StarDesktop.CurrentComponent

SearchDesc = Doc.createSearchDescriptor

SearchDesc.SearchString="turnover"

SearchDesc.SearchSimilarity = True

SearchDesc.SearchSimilarityAdd = 2

SearchDesc.SearchSimilarityExchange = 2

SearchDesc.SearchSimilarityRemove = 2

SearchDesc.SearchSimilarityRelax = False

Found = Doc.findFirst (SearchDesc)

Do While Found

Found.CharWeight = com.sun.star.awt.FontWeight.BOLD

Found = Doc.findNext(Found.End, Search)

Loop

The basic idea of search and replace in StarOffice is comparable to that used in VBA. Both interfaces provide
you with an object, through which the properties for searching and replacing can be defined. This object is
then applied to the required text area in order to perform the action. Whereas the responsible auxiliary object

in VBA can be reached through the Find property of the Range object, in StarOffice Basic it is created by

the createSearchDescriptor or createReplaceDescriptor call of the document object. Even the
search properties and methods available differ.

As in the old API from StarOffice, searching and replacing text in the new API is also performed using the

document object. Whereas previously there was an object called SearchSettings especially for defining

the search options, in the new object searches are now performed using a SearchDescriptor or

ReplaceDescriptor object for automatically replacing text. These objects cover not only the options, but
also the current search text and, if necessary, the associated text replacement. The descriptor objects are
created using the document object, completed in accordance with the relevant requests, and then
transferred back to the document object as parameters for the search methods.

100 StarOffice™ 6.0 Basic Programmer's Guide

Replacing Text Portions
Just as with the search function, the replacement function from StarOffice is also available in
StarOffice Basic. The two functions are handled identically. A special object which records the
parameters for the process is also first needed for a replacement process. It is called a

ReplaceDescriptor and supports the com.sun.star.util.ReplaceDescriptor service.

All the properties of the SearchDescriptor described in the previous paragraph are also

supported by ReplaceDescriptor. For example, during a replacement process, case sensitivity
can also be activated and deactivated, and similarity searches can be performed.

The following example demonstrates the use of ReplaceDescriptors for a search within a
StarOffice document.

Dim I As Long

Dim Doc As Object

Dim Replace As Object

Dim BritishWords(5) As String

Dim USWords(5) As String

BritishWords() = Array("colour", "neighbour", "centre", "behaviour", _

"metre", "through")

USWords() = Array("color", "neighbor", "center", "behavior", _

"meter", "thru")

Doc = StarDesktop.CurrentComponent

Replace = Doc.createReplaceDescriptor

For O = 0 To 5

Replace.SearchString = BritishWords(I)

Replace.ReplaceString = USWords(I)

Doc.replaceAll(Replace)

Next n

The expressions for searching and replacing are set using the SearchString and

ReplaceString properties of the ReplaceDescriptors. The actual replacement process is

finally implemented using the replaceAll method of the document object, which replaces all
occurrences of the search expression.

Example: searching and replacing text with regular expressions

The replacement function of StarOffice is particularly effective when used in conjunction with
regular expressions. These provide the option of defining a variable search expression with place
holders and special characters rather than a fixed value.

The regular expressions supported by StarOffice are described in detail in the online help section
for StarOffice. Here are a few examples:

 A period within a search expression stands for any character. The search expression sh.rt

therefore can stand for both for shirt and for short.

 The character ^ marks the start of a paragraph. All occurrences of the name Peter that are at

the start of a paragraph can therefore be found using the search expression ^Peter.

Chapter 6 Text Documents 101

 The character $ marks a paragraph end. All occurrences of the name Peter that are at the end

of a paragraph can therefore be found using the search expression Peter$.

 A * indicates that the preceding character may be repeated any number of times. It can be

combined with the period as a place holder for any character. The temper.*e expression, for

example, can stand for the expressions temperance and temperature.

The following example shows how all empty lines in a text document can be removed with the

help of the regular expression ^$:

Dim Doc As Object

Dim Replace As Object

Dim I As Long

Doc = StarDesktop.CurrentComponent

Replace = Doc.createReplaceDescriptor

Replace.SearchRegularExpression = True

Replace.SearchString = "^$"

Replace.ReplaceString = ""

Doc.replaceAll(Replace)

Text Documents: More than Just Text
So far, this chapter has only dealt with text paragraphs and their portions. But text documents may
also contain other objects. These include tables, drawings, text fields and directories. All of these
objects can be anchored to any point within a text.

Thanks to these common features, all of these objects in StarOffice support a common basic service

called com.sun.star.text.TextContent. This provides the following properties:

 AnchorType (Enum) – determines the anchor type of a TextContent object (default values

in accordance with com.sun.star.text.TextContentAnchorType enumeration).

 AnchorTypes (sequence of Enum) – enumeration of all AnchorTypes which support a

special TextContent object.

 TextWrap (Enum) – determines the text wrap type around a TextContent object (default

values in accordance with com.sun.star.text.WrapTextMode enumeration).

The TextContent objects also share some methods – in particular, those for creating, inserting
and deleting objects.

 A new TextContent object is created using the createInstance method of the document
object.

 An object is inserted using the insertTextContent method of the text object.

 TextContent objects are deleted using the removeTextContent method.

You will find a range of examples which use these methods in the following sections.

102 StarOffice™ 6.0 Basic Programmer's Guide

Tables
The following example creates a table with the help of the createInstance method described
previously.

Dim Doc As Object

Dim Table As Object

Dim Cursor As Object

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor()

Table = Doc.createInstance("com.sun.star.text.TextTable")

Table.initialize(5, 4)

Doc.Text.insertTextContent(Cursor, Table, False)

Once created, the table is set to the number of rows and columns requested using an initialize

call and then inserted in the text document using insertTextContent.

As can be seen in the example, the insertTextContent method expects not only the Content
object to be inserted, but two other parameters:

 a Cursor object which determines the insert position

 a Boolean variable which specifies whether the Content object is to replace the current

selection of the cursor (True value) or is to be inserted before the current selection in the text

(False)

When creating and inserting tables in a text document, objects similar to those available in VBA are used

in StarOffice Basic: The document object and a TextCursor object in StarOffice Basic or the Range

object as the VBA counterpart. Whereas the Document.Tables.Add method takes on the task of
creating and setting the table in VBA, this is created in StarOffice Basic in accordance with the previous

example using createInstance, initialized and inserted in the document through insertTextContent.

The tables inserted in a text document can be determined using a simple loop. The method of the

getTextTables() of the text document object is used for this purpose:

Dim Doc As Object

Dim TextTables As Object

Dim Table As Object

Dim I As Integer

Doc = StarDesktop.CurrentComponent

TextTables = Doc.getTextTables()

For I = 0 to TextTables.count - 1

Table = TextTables(I)

' Editing table

Next I

Text tables are available in StarOffice 6.0 through the TextTables list of the document object. This takes

the place of the former tables list provided in the Selection object. The previous example shows how a

Chapter 6 Text Documents 103

text table can be created. The options for accessing text tables are described in the following section.

Editing Tables

A table consists of individual rows. These in turn contain the various cells. Strictly speaking, there
are no table columns in StarOffice. These are produced implicitly by arranging the rows (one under
another) next to one another. To simplify access to the tables, StarOffice, however, provides some
methods which operate using columns. These are useful if no cells have been merged in the table.

Let us first take the properties of the table itself. These are defined in the

com.sun.star.text.TextTable service. Here is an list of the most important properties of the
table object:

 BackColor (Long) – background color of table.

 BottomMargin (Long) – bottom margin in 100ths of a millimeter.

 LeftMargin (Long) – left margin in 100ths of a millimeter.

 RightMargin (Long) – right margin in 100ths of a millimeter.

 TopMargin (Long) – top margin in 100ths of a millimeter.

 RepeatHeadline (Boolean) – table header is repeated on every page.

 Width (Long) – absolute width of the table in 100ths of a millimeter.

Rows

A table consists of a list containing rows. The following example shows how the rows of a table can
be retrieved and formatted.

Dim Doc As Object

Dim Table As Object

Dim Cursor As Object

Dim Rows As Object

Dim Row As Object

Dim I As Integer

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor()

Table = Doc.createInstance("com.sun.star.text.TextTable")

Table.initialize(5, 4)

Doc.Text.insertTextContent(Cursor, Table, False)

Rows = Table.getRows

For I = 0 To Rows.getCount() - 1

Row = Rows.getByIndex(I)

Row.BackColor = &HFF00FF

Next

The example first creates a list containing all rows using a Table.getRows call. The getCount

and getByIndex methods allow the list to be further processed and belongs to the

104 StarOffice™ 6.0 Basic Programmer's Guide

com.sun.star.table.XtableRows interface. The getByIndex method returns a row object,

which supports the com.sun.star.text.TextTableRow service.

Here are the central methods of the com.sun.star.table.XtableRows interface:

 getByIndex(Integer) – returns a row object for the specified index.

 getCount() – returns the number of row objects.

 insertByIndex(Index, Count) – inserts Count rows in the table as of the Index position.

 removeByIndex(Index, Count) – deletes Count rows from the table as of the Index
position.

Whereas the getByIndex and getCount methods are available in all tables, the insertByIndex

and removeByIndex methods can only be used in tables that do not contain merged cells.

The com.sun.star.text.TextTableRow service provides the following properties:

 BackColor (Long) – background color of row.

 Height (Long) – height of line in 100ths of a millimeter.

 IsAutoHeight (Boolean) – table height is dynamically adapted to the content.

 VertOrient (const) – vertical orientation of the text frame – details on vertical orientation of

the text within the table (values in accordance with com.sun.star.text.VertOrientation)

Columns

Columns are accessed in the same way as rows, using the getByIndex, getCount,

insertByIndex and removeByIndex methods on the Column object, which is reached through

getColumns. They can, however, only be used in tables that do not contain merged table cells.
Cells cannot be formatted by column in StarOffice Basic. To do so, the method of formatting
individual table cells must be used.

Chapter 6 Text Documents 105

Cells

Each cell of a StarOffice-document has a unique name. If the cursor of StarOffice is in a cell, then

the name of that cell can be seen in the status bar. The top left cell is usually called A1 and the

bottom right row is usually called Xn, where X stands for the letters of the top column and n for the

numbers of the last row. The cell objects are available through the getCellByName() method of
the table object. The following example shows a loop that passes through all the cells of a table and
enters the corresponding row and column numbers into the cells.

Dim Doc As Object

Dim Table As Object

Dim Cursor As Object

Dim Rows As Object

Dim RowIndex As Integer

Dim Cols As Object

Dim ColIndex As Integer

Dim CellName As String

Dim Cell As Object

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor()

Table = Doc.createInstance("com.sun.star.text.TextTable")

Table.initialize(5, 4)

Doc.Text.insertTextContent(Cursor, Table, False)

Rows = Table.getRows

Cols = Table.getColumns

For RowIndex = 1 To Rows.getCount()

For ColIndex = 1 To Cols.getCount()

CellName = Chr(64 + ColIndex) & RowIndex

Cell = Table.getCellByName(CellName)

Cell.String = "row: " & CStr(RowIndex) + ", column: " & CStr(ColIndex)

Next

Next

A table cell is comparable with a standard text. It supports the createTextCursor interface for

creating an associated TextCursor object.

CellCursor = Cell.createTextCursor()

All formatting options for individual characters and paragraphs are therefore automatically
available.

106 StarOffice™ 6.0 Basic Programmer's Guide

The following example searches through all tables of a text document and applies the right-align
format to all cells with numerical values by means of the corresponding paragraph property.

Dim Doc As Object

Dim TextTables As Object

Dim Table As Object

Dim CellNames

Dim Cell As Object

Dim CellCursor As Object

Dim I As Integer

Dim J As Integer

Doc = StarDesktop.CurrentComponent

TextTables = Doc.getTextTables()

For I = 0 to TextTables.count - 1

Table = TextTables(I)

CellNames = Table.getCellNames()

For J = 0 to UBound(CellNames)

Cell = Table.getCellByName(CellNames(J))

If IsNumeric(Cell.String) Then

CellCursor = Cell.createTextCursor()

CellCursor.paraAdjust = com.sun.star.style.ParagraphAdjust.RIGHT

End If

Next

Next

The example creates a TextTables list containing all tables of a text that are traversed in a loop.
StarOffice then creates a list of the associated cell names for each of these tables. There are passed
through in turn in a loop. If a cell contains a numerical value, then the example changes the

formatting correspondingly. To do this, it first creates a TextCursor object which makes reference
to the content of the table cell and then adapts the paragraph properties of the table cell.

Text Frames
Text frames are considered to be TextContent objects, just like tables and graphs. They may
essentially consist of standard text, but can be placed at any position on a page and are not
included in the text flow.

As with all TextContent objects, a distinction is also made with text frames between the actual
creation and insertion in the document.

Dim Doc As Object

Dim TextTables As Object

Dim Cursor As Object

Dim Frame As Object

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor()

Frame = Doc.createInstance("com.sun.star.text.TextFrame")

Doc.Text.insertTextContent(Cursor, Frame, False)

Chapter 6 Text Documents 107

The text frame is created using the createInstance method of the document object. The text

frame created in this way can then be inserted in the document using the insertTextContent

method of the Text object. In so doing, the name of the proper

com.sun.star.text.TextFrame service should be specified.

The text frame’s insert position is determined by a Cursor object, which is also executed when
inserted.

Text frames are StarOffice’s counterpart to the position frame used in Word. Whereas VBA uses the

Document.Frames.Add method for this purpose, creation in VBA is performed using the previous

procedure with the aid of a TextCursor as well as the createInstance method of the document object.

Text frame objects provide a range of properties with which the position and behavior of the frame
can be influenced. The majority of these properties are defined in the

com.sun.star.text.BaseFrameProperties service, which is also supported by each
TextFrame service. The central properties are:

 BackColor (Long) – background color of the text frame.

 BottomMargin (Long) – bottom margin in 100ths of a millimeter.

 LeftMargin (Long) – left margin in 100ths of a millimeter.

 RightMargin (Long) – right margin in 100ths of a millimeter.

 TopMargin (Long) – top margin in 100ths of a millimeter.

 Height (Long) – height of text frame in 100ths of a millimeter.

 Width (Long) – width of text frame in 100ths of a millimeter.

 HoriOrient (const) – horizontal orientation of text frame (in accordance with

com.sun.star.text.HoriOrientation).

 VertOrient (const) – vertical orientation of text frame (in accordance with

com.sun.star.text.VertOrientation).

108 StarOffice™ 6.0 Basic Programmer's Guide

The following example creates a text frame using the properties described previously:

Dim Doc As Object

Dim TextTables As Object

Dim Cursor As Object

Dim Frame As Object

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor()

Cursor.gotoNextWord(False)

Frame = Doc.createInstance("com.sun.star.text.TextFrame")

Frame.Width = 3000

Frame.Height = 1000

Frame.AnchorType = com.sun.star.text.TextContentAnchorType.AS_CHARACTER

Frame.TopMargin = 0

Frame.BottomMargin = 0

Frame.LeftMargin = 0

Frame.RightMargin = 0

Frame.BorderDistance = 0

Frame.HoriOrient = com.sun.star.text.HoriOrientation.NONE

Frame.VertOrient = com.sun.star.text.VertOrientation.LINE_TOP

Doc.Text.insertTextContent(Cursor, Frame, False)

The example creates a TextCursor as the insertion mark for the text frame. This is positioned
between the first and second word of the text. The text frame is created using

Doc.createInstance. The properties of the text frame objects are set to the starting values
required.

The interaction between the AnchorType (from the TextContent Service) and VertOrient

(from the BaseFrameProperties Service) properties should be noted here. AnchorType

receives the AS_CHARACTER value. The text frame is therefore inserted directly in the text flow and
behaves like a character. It can, for example, be moved into the next line if a line break occurs. The

LINE_TOP value of the VertOrient property ensures that the upper edge of the text frame is at
the same height as the upper edge of the character.

Once initialization is complete, the text frame is finally inserted in the text document using a call

from insertTextContent.

Chapter 6 Text Documents 109

To edit the content of a text frame, the user uses the TextCursor, which has already been
mentioned numerous times and is also available for text frames.

Dim Doc As Object

Dim TextTables As Object

Dim Cursor As Object

Dim Frame As Object

Dim FrameCursor As Object

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor()

Frame = Doc.createInstance("com.sun.star.text.TextFrame")

Frame.Width = 3000

Frame.Height = 1000

Doc.Text.insertTextContent(Cursor, Frame, False)

FrameCursor = Frame.createTextCursor()

FrameCursor.charWeight = com.sun.star.awt.FontWeight.BOLD

FrameCursor.paraAdjust = com.sun.star.style.ParagraphAdjust.CENTER

FrameCursor.String = "This is a small Test!"

The example creates a text frame, inserts this in the current document and opens a TextCursor
for the text frame. This cursor is used to set the frame font to bold type and to set the paragraph
orientation to centered. The text frame is finally assigned the “This is a small test!” string.

Text Fields
Text fields are TextContent objects because they provide additional logic extending beyond pure
text. Text fields can be inserted in a text document using the same methods as those used for other

TextContent objects:

Dim Doc As Object

Dim DateTimeField As Object

Dim Cursor As Object

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor()

DateTimeField = Doc.createInstance("com.sun.star.text.TextField.DateTime")

DateTimeField.IsFixed = False

DateTimeField.IsDate = True

Doc.Text.insertTextContent(Cursor, DateTimeField, False)

The example inserts a text field with the current date at the start of the current text document. The

True value of the IsDate property results in only the date and not time being displayed. The

False value for IsFixed ensures that the date is automatically updated when the document is
opened.

While the type of a field in VBA is specified by a parameter of the Document.Fields.Add method, the
name of the service that is responsible for the field type in question defines it in StarOffice Basic.

110 StarOffice™ 6.0 Basic Programmer's Guide

In the past, text fields were accessed using a whole range of methods that StarOffice made available in the

old Selection object (for example InsertField, DeleteUserField, SetCurField).

In StarOffice 6.0, the fields are administered using an object-oriented concept. To create a text field, a text
field of the type required should first be created and initialized using the properties required. The text field

is then inserted in the document using the insertTextContent method. A corresponding source text
can be seen in the previous example. The most important field types and their properties are described in
the following sections.

In addition to inserting text fields, searching a document for the fields can also be an important
task. The following example shows how all text fields of a text document can be traversed in a loop
and checked for their relevant type.

Dim Doc As Object

Dim TextFieldEnum As Object

Dim TextField As Object

Dim I As Integer

Doc = StarDesktop.CurrentComponent

TextFieldEnum = Doc.getTextFields.createEnumeration

While TextFieldEnum.hasMoreElements()

TextField = TextFieldEnum.nextElement()

If TextField.supportsService("com.sun.star.text.TextField.DateTime") Then

MsgBox "Date/time"

ElseIf TextField.supportsService("com.sun.star.text.TextField.Annotation") Then

MsgBox "Annotation"

Else

MsgBox "unknown"

End If

Wend

The starting point for establishing the text fields present is the TextFields list of the document

object. The example creates an Enumeration object on the basis of this list, with which all text
fields can be queried in turn in a loop. The text fields found are checked for the service supported

using the supportsService method. If the field proves to be a date/time field or an annotation,
then the corresponding field type is displayed in an information box. If on the other hand, the
example encounters another field, then it displays the information “unknown”.

Below, you will find a list of the most important text fields and their associated properties. A
complete list of all text fields is provided in the API reference in the

com.sun.star.text.TextField module. (When listing the service name of a text field,
uppercase and lowercase characters should be used in StarOffice Basic, as in the previous
example.)

Chapter 6 Text Documents 111

Number of Pages, Words and Characters

The text fields

 com.sun.star.text.TextField.PageCount

 com.sun.star.text.TextField.WordCount

 com.sun.star.text.TextField.CharacterCount

return the number of pages, words or characters of a text. They support the following property:

 NumberingType (const) - numbering format (guidelines in accordance with constants from

com.sun.star.style.NumberingType).

Current Page

The number of the current page can be inserted in a document using the

com.sun.star.text.TextField.PageNumber text field. The following properties can be
specified:

 NumberingType (const) - number format (guidelines in accordance with constants from

com.sun.star.style.NumberingType).

 Offset (short) – offset added to the number of pages (negative specification also possible).

The following example shows how the number of pages can be inserted into the footer of a
document.

Dim Doc As Object

Dim DateTimeField As Object

Dim PageStyles As Object

Dim StdPage As Object

Dim FooterCursor As Object

Dim PageNumber As Object

Doc = StarDesktop.CurrentComponent

PageNumber = Doc.createInstance("com.sun.star.text.TextField.PageNumber")

PageNumber.NumberingType = com.sun.star.style.NumberingType.ARABIC

PageStyles = Doc.StyleFamilies.getByName("PageStyles")

StdPage = PageStyles("Default")

StdPage.FooterIsOn = True

FooterCursor = StdPage.FooterTextLeft.Text.createTextCursor()

StdPage.FooterTextLeft.Text.insertTextContent(FooterCursor, PageNumber, False)

The example first creates a text field which supports the

com.sun.star.text.TextField.PageNumber service. Since the header and footer lines are
defined as part of the page templates of StarOffice, this is initially established using the list of all

PageStyles.

To ensure that the footer line is visible, the FooterIsOn property is set to True. The text field is then
inserted in the document using the associated text object of the left-hand footer line.

112 StarOffice™ 6.0 Basic Programmer's Guide

Annotations

Annotation fields (com.sun.star.text.TextField.Annotation) can be seen by means of a
small yellow symbol in the text. Clicking on this symbol opens a text field, in which a comment on
the current point in the text can be recorded. An annotation field has the following properties.

 Author (String) - name of author.

 Content (String) - comment text.

 Date (Date) - date on which annotation is written.

Date / Time

A date /time field (com.sun.star.text.TextField.DateTime) represents the current date
or the current time. It supports the following properties:

 IsFixed (Boolean) – if True, the time details of the insertion remain unchanged, if False,
these are updated each time the document is opened.

 IsDate (Boolean) – if True, the field displays the current date, otherwise the current time.

 DateTimeValue (struct) – current content of field (com.sun.star.util.DateTime
structure)

 NumberFormat (const) – format in which the time or date is depicted.

Chapter Name / Number

The name of the current chapter is available through a text field of the

com.sun.star.text.TextField.Chapter type. The form can be defined using two
properties.

 ChapterFormat (const) – determines whether the chapter name or the chapter number is

depicted (in accordance with com.sun.star.text.ChapterFormat)

 Level (Integer) – determines the chapter level whose name and/or chapter number is to
be displayed. The value 0 stands for highest level available.

Chapter 6 Text Documents 113

Bookmarks
Bookmarks (Service com.sun.star.text.Bookmark) are TextContent objects. Bookmarks are
created and inserted using the concept already described previously:

Dim Doc As Object

Dim Bookmark As Object

Dim Cursor As Object

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor()

Bookmark = Doc.createInstance("com.sun.star.text.Bookmark")

Bookmark.Name = "My bookmarks"

Doc.Text.insertTextContent(Cursor, Bookmark, True)

The example creates a Cursor, which marks the insert position of the bookmark and then the

actual bookmark object (Bookmark). The bookmark is then assigned a name and is inserted in the

document through insertTextContent at the cursor position.

The bookmarks of a text are accessed through a list called Bookmarks. The bookmarks can either
be accessed by their number or their name.

The following example shows how a bookmark can be found within a text, and a text inserted at its
position.

Dim Doc As Object

Dim Bookmark As Object

Dim Cursor As Object

Doc = StarDesktop.CurrentComponent

Bookmark = Doc.Bookmarks.getByName("My bookmarks")

Cursor = Doc.Text.createTextCursorByRange(Bookmark.Anchor)

Cursor.String = "Here is the bookmark"

In this example, the getByName method is used to find the bookmark required by means of its

name. The createTextCursorByRange call then creates a Cursor, which is positioned at the
anchor position of the bookmark. The cursor then inserts the text required at this point.

114 StarOffice™ 6.0 Basic Programmer's Guide

7 Spreadsheet Documents
StarOffice Basic provides an extensive interface for program-controlled creation and editing of
spreadsheets. This chapter describes how to control the relevant services, methods and properties
of spreadsheet documents.

The first section addresses the basic structure of spreadsheet documents and shows you how to
access and to edit the contents of individual cells.

The second section concentrates on how to edit spreadsheets efficiently by focusing on cell areas
and the options for searching and replacing cell contents.

The Range object allows you to address any table area and has been extended in the new API.

The Structure of Table-Based Documents
(Spreadsheets)
The document object of a spreadsheet is based on the

com.sun.star.sheet.SpreadsheetDocument service. Each of these documents may contain
several spreadsheets. In this guide, a table-based document or spreadsheet document is the entire
document, whereas a spreadsheet (or sheet for short) is a sheet (table) in the document.

Different terminology for spreadsheets and their content is used in VBA and StarOffice Basic. Whereas the
document object in VBA is called a Workbook and its individual pages Worksheets, they are called
SpreadsheetDocument and Sheet in StarOffice Basic.

Spreadsheets
You can access the individual sheets of a spreadsheet document through the Sheets list.

The following examples show you how to access a sheet either through its number or its name.

115

CHAPTER 7

Example 1: access by means of the number (numbering begins with 0)

Dim Doc As Object

Dim Sheet As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc. Sheets (0)

Example 2: access by means of the name

Dim Doc As Object

Dim Sheet As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets.getByName("Sheet 1")

In the first example, the sheet is accessed by its number (counting begins at 0). In the second

example, the sheet is accessed by its name and the getByName method.

The Sheet object that is obtained by the getByName method supports the

com.sun.star.sheet.Spreadsheet service. In addition to providing several interfaces for
editing the content, this service provides the following properties:

 IsVisible (Boolean) – the spreadsheet is visible.

 PageStyle (String) – name of the page template for the spreadsheet.

Creating, Deleting and Renaming Sheets

The Sheets list for a spreadsheet document is also used to create, delete, and rename

individual sheets. The following example uses the hasByName method to check if a sheet called
MySheet exists. If it does, the method determines a corresponding object reference by using the

getByName method and then saves the reference in a variable in Sheet. If the corresponding

sheet does not exist, it is created by the createInstance call and inserted in the spreadsheet

document by the insertByName method.

Dim Doc As Object

Dim Sheet As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

If Doc.Sheets.hasByName("MySheet") Then

Sheet = Doc.Sheets.getByName("MySheet")

Else

Sheet = Doc.createInstance("com.sun.star.sheet.Spreadsheet")

Doc.Sheets.insertByName("MySheet", Sheet)

End If

The getByName and insertByName methods are from the

com.sun.star.container.XnameContainer interface as described in Chapter 4.

116 StarOffice™ 6.0 Basic Programmer's Guide

Rows and Columns
Each sheet contains a list of its rows and columns. These are available through the Rows and

Columns properties of the spreadsheet object and support the

com.sun.star.table.TableColumns and/or com.sun.star.table.TableRows services.

The following example creates two objects that reference the first row and the first column of a

sheet and stores the references in the FirstCol and FirstRow object variables.

Dim Doc As Object

Dim Sheet As Object

Dim FirstRow As Object

Dim FirstCol As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

FirstCol = Sheet.Columns(0)

FirstRow = Sheet.Rows(0)

The column objects support the com.sun.star.table.TableColumn service that has the
following properties:

 Width (long) – width of a column in hundredths of a millimeter.

 OptimalWidth (Boolean) – sets a column to its optimum width.

 IsVisible (Boolean) – displays a column.

 IsStartOfNewPage (Boolean) – when printing, creates a page break before a column.

The width of a column is only optimized when the OptimalWidth property is set to True. If the
width of an individual cell is changed, the width of the column that contains the cell is not

changed. In terms of functionality, OptimalWidth is more of a method than a property.

The row objects are based on the com.sun.star.table.RowColumn service that has the
following properties:

 Height (long) – height of the row in 100ths of a millimeter.

 OptimalHeight (Boolean) – sets the row to its optimum height.

 IsVisible (Boolean) – displays the row.

 IsStartOfNewPage (Boolean) – when printing, creates a page break before the row.

If the OptimalHeight property of a row is set to the True, the row height changes automatically
when the height of a cell in the row is changed. Automatic optimization continues until the row is

assigned an absolute height through the Height property.

Chapter 7 Spreadsheet Documents 117

The following example activates the automatic height optimization for the first five rows in the
sheet and makes the second column invisible.

Dim Doc As Object

Dim Sheet As Object

Dim Row As Object

Dim Col As Object

Dim I As Integer

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

For I = 0 To 4

Row = Sheet.Rows(I)

Row.OptimalHeight = True

Next I

Col = Sheet.Columns(1)

Col.IsVisible = False

The Rows and Columns lists can be accessed through an index in StarOffice Basic. Unlike in VBA, the
first column has the index 0 and not the index 1.

Inserting and Deleting Rows and Columns

The Rows and Columns objects of a sheet can access existing rows and columns as well as insert
and delete them.

Dim Doc As Object

Dim Sheet As Object

Dim NewColumn As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

Sheet.Columns.insertByIndex(3, 1)

Sheet.Columns.removeByIndex(5, 1)

This example uses the insertByIndex method to insert a new column into the fourth column
position in the sheet (index 3 - numbering starts at 0). The second parameter specifies the number
of columns to be inserted (in this example: one).

The removeByIndex method deletes the sixth column (index 5). Again, the second parameter
specifies the number of columns that you want to delete.

The methods for inserting and deleting rows use the Rows object function in the same way as the

methods shown for editing columns using the Columns object.

118 StarOffice™ 6.0 Basic Programmer's Guide

Cells
A spreadsheet consists of a two-dimensional list containing cells. Each cell is defined by its X and
Y-position with respect to the top left cell which has the position (0,0).

The following example creates an object that references the top left cell and inserts a text in the cell:

Dim Doc As Object

Dim Sheet As Object

Dim Cell As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

Cell = Sheet.getCellByPosition(0, 0)

Cell.String = "Test"

In addition to numerical coordinates, each cell in a sheet has a name, for example, the top left cell

(0,0) of a spreadsheet is called A1. The letter A stands for the column and the number 1 for the row.
It is important that the name and position of a cell are not confused because row counting for names
begins with 1 but the counting for position begins with 0.

In StarOffice, a table cell can be empty or contain text, numbers, or formulas. The cell type is not
determined by the content that is saved in the cell, but rather the object property which was used

for its entry. Numbers can be inserted and called up with the Value property, text with the

String property, and formulas with the Formula property.

Dim Doc As Object

Dim Sheet As Object

Dim Cell As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

Cell = Sheet.getCellByPosition(0, 0)

Cell.Value = 100

Cell = Sheet.getCellByPosition(0, 1)

Cell.String = "Test"

Cell = Sheet.getCellByPosition(0, 2)

Cell.Formula = "=A1"

The example inserts one number, one text, and one formula in the fields A1 to A3.

The Value, String, and Formula properties supersede the PutCell method for setting the values of a
table cell.

StarOffice treats cell content that is entered using the String property as text, even if the content
is a number. Numbers are left-aligned in the cell instead of right-aligned. You should also note the
difference between text and numbers when you use formulas:

Dim Doc As Object

Dim Sheet As Object

Chapter 7 Spreadsheet Documents 119

Dim Cell As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

Cell = Sheet.getCellByPosition(0, 0)

Cell.Value = 100

Cell = Sheet.getCellByPosition(0, 1)

Cell.String = 1000

Cell = Sheet.getCellByPosition(0, 2)

Cell.Formula = "=A1+A2"

MsgBox Cell.Value

Although cell A1 contains the value 100 and cell A2 contains the value 1000, the A1+A2 formula
returns the value 100. This is because the contents of cell A2 were entered as a string and not as a
number.

To check if the contents of a cell contains a number or a string, use the Type property:

Dim Doc As Object

Dim Sheet As Object

Dim Cell As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

Cell = Sheet.getCellByPosition(1,1)

Cell.Value = 1000

Select Case Cell.Type

Case com.sun.star.table.CellContentType.EMPTY

MsgBox "Content: Empty"

Case com.sun.star.table.CellContentType.VALUE

MsgBox "Content: Value"

Case com.sun.star.table.CellContentType.TEXT

MsgBox "Content: Text"

Case com.sun.star.table.CellContentType.FORMULA

MsgBox "Content: Formula"

End Select

The Cell.Type property returns a value for the com.sun.star.table.CellContentType
enumeration which identifies the contents type of a cell. The possible values are:

 EMPTY – no value

 VALUE – number

 TEXT – strings

 FORMULA – formula

120 StarOffice™ 6.0 Basic Programmer's Guide

Inserting, Deleting, Copying and Moving Cells

In addition to directly modifying cell content, StarOffice Calc also provides an interface that allows
you to insert, delete, copy, or merge cells. The interface

(com.sun.star.sheet.XRangeMovement) is available through the spreadsheet object and
provides four methods for modifying cell content.

The insertCell method is used to insert cells into a sheet.

Dim Doc As Object

Dim Sheet As Object

Dim CellRangeAddress As New com.sun.star.table.CellRangeAddress

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

CellRangeAddress.Sheet = 0

CellRangeAddress.StartColumn = 1

CellRangeAddress.StartRow = 1

CellRangeAddress.EndColumn = 2

CellRangeAddress.EndRow = 2

Sheet.insertCells(CellRangeAddress, com.sun.star.sheet.CellInsertMode.DOWN)

This example inserts a cells range that is two rows by two columns in size into the second column
and row (each bear the number 1) of the first sheet (number 0) in the spreadsheet. Any existing
values in the specified cell range are are moved below the range.

To define the cell range that you want to insert, use the

com.sun.star.table.CellRangeAddress structure. The following values are included in this
structure:

 Sheet (short) – number of the sheet (numbering begins with 0).

 StartColumn (long) – first column in the cell range (numbering begins with 0).

 StartRow (long) – first row in the cell range (numbering begins with 0).

 EndColumn (long) – final column in the cell range (numbering begins with 0).

 EndRow (long) – final row in the cell range (numbering begins with 0).

The completed CellRangeAddress structure must be passed as the first parameter to the

insertCells method. The second parameter of insertCells contains a value of the com.sun.

star.sheet.CellInsertMode enumeration and defines what is to be done with the values that

are located in front of the insert position. The CellInsertMode enumeration recognizes the
following values:

 NONE – the current values remain in their present position.

 DOWN – the cells at and under the insert position are moved downwards.

 RIGHT – the cells at and to the right of the insert position are moved to the right.

 ROWS – the rows after the insert position are moved downwards.

 COLUMNS – the columns after the insert position are moved to the right.

Chapter 7 Spreadsheet Documents 121

The removeRange method is the counterpart to the insertCells method. This method deletes

the range that is defined in the CellRangeAddress structure from the sheet.

Dim Doc As Object

Dim Sheet As Object

Dim CellRangeAddress As New com.sun.star.table.CellRangeAddress

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

CellRangeAddress.Sheet = 0

CellRangeAddress.StartColumn = 1

CellRangeAddress.StartRow = 1

CellRangeAddress.EndColumn = 2

CellRangeAddress.EndRow = 2

Sheet.removeRange(CellRangeAddress, com.sun.star.sheet.CellDeleteMode.UP)

This example removes the B2:C3 cell range from the sheet and then shifts the underlying cells up
by two rows. The type of removal is defined by one of the following values from the

com.sun.star.sheet.CellDeleteMode enumeration:

 NONE – the current values remain in their current position.

 UP – the cells at and below the insert position are moved upwards.

 LEFT – the cells at and to the right of the insert position are moved to the left.

 ROWS – the rows after the insert position are moved upwards.

 COLUMNS – the columns after the insert position are moved to the left.

The XRangeMovement interface provides two additional methods for moving (moveRange) or

copying (copyRange) cell ranges. The following example moves the B2:C3 range so that the range
starts at position A6:

Dim Doc As Object

Dim Sheet As Object

Dim CellRangeAddress As New com.sun.star.table.CellRangeAddress

Dim CellAddress As New com.sun.star.table.CellAddress

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

CellRangeAddress.Sheet = 0

CellRangeAddress.StartColumn = 1

CellRangeAddress.StartRow = 1

CellRangeAddress.EndColumn = 2

CellRangeAddress.EndRow = 2

CellAddress.Sheet = 0

CellAddress.Column = 0

CellAddress.Row = 5

Sheet.moveRange(CellAddress, CellRangeAddress)

122 StarOffice™ 6.0 Basic Programmer's Guide

In addition to the CellRangeAdress structure, the moveRange method expects a

com.sun.star.table.CellAddress structure to define the origin of the move’s target region.

The CellAddress method provides the following values:

 Sheet (short) – number of the spreadsheet (numbering begins with 0).

 Column (long) – number of the addressed column (numbering begins with 0).

 Row (long) – number of the addressed row (numbering begins with 0).

The cell contents in the target range are always overwritten by the moveRange method.

Unlike in the InsertCells method , a parameter for performing automatic moves is not

provided in the removeRange method.

The copyRange method functions in the same way as the moveRange method, except that

copyRange inserts a copy of the cell range instead of moving it.

In terms of their function, the StarOffice Basic insertCell, removeRange, and copyRange

methods are comparable with the VBA Range.Insert, Range.Delete ,and Range.Copy methods.

Whereas in VBA, the methods are applied to the corresponding Range object, in StarOffice Basic they

are applied to the associated Sheet object.

Chapter 7 Spreadsheet Documents 123

Formatting
A spreadsheet document provides properties and methods for formatting cells and pages.

Cell Properties

There are numerous options for formatting cells, such as specifying the font type and size for text.

Each cell supports the com.sun.star.style.CharacterProperties and

com.sun.star.style.ParagraphProperties services, the main properties of which are
described in Chapter 6 (Text Documents). Special cell formatting is handled by the

com.sun.star.table.CellProperties service. The main properties of this service are
described in the following sections.

You can apply all of the named properties to individual cells and to cell ranges.

The CellProperties object in the StarOffice API is comparable with the Interior object from VBA
which also defines cell-specific properties.

Background Color and Shadows

The com.sun.star.table.CellProperties service provides the following properties for
defning background colors and shadows:

 CellBackColor (Long) - background color of the table cell.

 IsCellBackgroundTransparent (Boolean) - sets the background color to transparent.

 ShadowFormat (struct) – specifies the shadow for cells (structure in accordance with

com.sun.star.table.ShadowFormat).

The com.sun.star.table.ShadowFormat structure and the detailed specifications for cell
shadows have the following structure:

 Location (enum) - position of shadow (value from the

com.sun.star.table.ShadowLocation structure).

 ShadowWidth (Short) - size of shadow in hundredths of a millimeter.

 IsTransparent (Boolean) - sets the shadow to transparent.

 Color (Long) - color of shadow.

The following example writes the number 1000 to the B2 cell, changes the background color to red

using the CellBackColor property, and then creates a light gray shadow for the cell that is
moved 1 mm to the left and down.

124 StarOffice™ 6.0 Basic Programmer's Guide

Dim Doc As Object

Dim Sheet As Object

Dim Cell As Object

Dim ShadowFormat As New com.sun.star.table.ShadowFormat

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

Cell = Sheet.getCellByPosition(1,1)

Cell.Value = 1000

Cell.CellBackColor = RGB(255, 0, 0)

ShadowFormat.Location = com.sun.star.table.ShadowLocation.BOTTOM_RIGHT

ShadowFormat.ShadowWidth = 100

ShadowFormat.Color = RGB(160, 160, 160)

Cell.ShadowFormat = ShadowFormat

Justification

StarOffice provides various functions that allow you to change the justification of a text in a table
cell.

The following properties define the horizontal and vertical justification of a text:

 HoriJustify (enum) - horizontal justification of the text (value from

com.sun.star.table.CellHoriJustify)

 VertJustify (enum) - vertical justification of the text (value from

com.sun.star.table.CellVertJustify)

 Orientation (enum) - orientation of text (value in accordance with

com.sun.star.table.CellOrientation)

 IsTextWrapped (Boolean) - permits automatic line breaks within the cell

 RotateAngle (Long) - angle of rotation of text in hundredths of a degree

The following example shows how you can "stack" the contents of a cell so that the individual
characters are printed one under another in the top left corner of the cell. The characters are not
rotated.

Dim Doc As Object

Dim Sheet As Object

Dim Cell As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

Cell = Sheet.getCellByPosition(1,1)

Cell.Value = 1000

Cell.HoriJustify = com.sun.star.table.CellHoriJustify.LEFT

Cell.VertJustify = com.sun.star.table.CellVertJustify.TOP

Cell.Orientation = com.sun.star.table.CellOrientation.STACKED

Chapter 7 Spreadsheet Documents 125

Number, Date and Text Format

StarOffice provides a whole range of predefined date and time formats. Each of these formats has

an internal number that is used to assign the format to cells using the NumberFormat property.

StarOffice provides the queryKey and addNew methods so that you can access existing number
formats as well as create your own number formats. The methods are accessed through the
following object call:

NumberFormats = Doc.NumberFormats

A format is specified using a format string that is structured in a similar way to the format function
of StarOffice Basic. However there is one major difference: whereas the command format expects
English abbreviations and decimal points or characters as thousands separators, the country-
specified abbreviations must be used for the structure of a command format for the
NumberFormats object.

The following example formats the B2 cell so that numbers are displayed with three decimal places
and use commas as a thousands separator.

Dim Doc As Object

Dim Sheet As Object

Dim Cell As Object

Dim NumberFormats As Object

Dim NumberFormatString As String

Dim NumberFormatId As Long

Dim LocalSettings As New com.sun.star.lang.Locale

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

Cell = Sheet.getCellByPosition(1,1)

Cell.Value = 23400.3523565

LocalSettings.Language = "en"

LocalSettings.Country = "us"

NumberFormats = Doc.NumberFormats

NumberFormatString = "#,##0.000"

NumberFormatId = NumberFormats.queryKey(NumberFormatString, LocalSettings, True)

If NumberFormatId = -1 Then

NumberFormatId = NumberFormats.addNew(NumberFormatString, LocalSettings)

End If

MsgBox NumberFormatId

Cell.NumberFormat = NumberFormatId

The Format Cells dialog in StarOffice Calc provides an overview of the different formatting
options for cells.

Page Properties

Page properties are the formatting options that position document content on a page as well as
visual elements that are repeated page after page. These include

126 StarOffice™ 6.0 Basic Programmer's Guide

 Paper formats

 Page margins

 Headers and footers.

The procedure for defining page formats differs from other forms of formatting. Whereas cell,
paragraph, and character element can be directly, page formats can also be defined and indirectly
applied using page styles. For example, headers or footers are added to the page style.

The following sections describe the main formatting options for spreadsheet pages. Many of the
styles that are described are also available for text documents. The page properties that are valid

for both types of documents are defined in the com.sun.star.style.PageProperties
service. The page properties that only apply to spreadsheet documents are defined in the

com.sun.star.sheet.TablePageStyle service.

The page properties (page margins, borders, and so on) for a Microsoft Office document are defined by

means of a PageSetup object at the Worksheet object (Excel) or Document object (Word) level.
In StarOffice, these properties are defined using a page style which in turn is linked to the associated
document.

Page Background

The com.sun.star.style.PageProperties service defines the following properties of a
pages background:

 BackColor (long) – color of background

 BackGraphicURL (String) – URL of the background graphics that you want to use

 BackGraphicFilter (String) – name of the filter for interpreting the background graphics

 BackGraphicLocation (Enum) – position of the background graphics (value according to

com.sun.star.style.GraphicLocation enumeration)

 BackTransparent (Boolean) - makes the background transparent

Page Format

The page format is defined using the following properties of the

com.sun.star.style.PageProperties service:

 IsLandscape (Boolean) – landscape format

 Width (long) – width of page in hundredths of a millimeter

 Height (long) – height of page in hundredths of a millimeter

 PrinterPaperTray (String) – name of the printer paper tray that you want to use

Chapter 7 Spreadsheet Documents 127

The following example sets the page size of the "Default" page style to the DIN A5 landscape
format (height 14.8 cm, width 21 cm):

Dim Doc As Object

Dim Sheet As Object

Dim StyleFamilies As Object

Dim PageStyles As Object

Dim DefPage As Object

Doc = StarDesktop.CurrentComponent

StyleFamilies = Doc.StyleFamilies

PageStyles = StyleFamilies.getByName("PageStyles")

DefPage = PageStyles.getByName("Default")

DefPage.IsLandscape = True

DefPage.Width = 21000

DefPage.Height = 14800

Page Margin, Border and Shadow

The com.sun.star.style.PageProperties service provides the following properties for
adjusting page margins as well as borders and shadows:

 LeftMargin (long) – width of the left hand page margin in hundredths of a millimeter

 RightMargin (long) – width of the right hand page margin in hundredths of a millimeter.

 TopMargin (long) – width of the top page margin in hundredths of a millimeter

 BottomMargin (long) – width of the bottom page margin in hundredths of a millimeter

 LeftBorder (struct) – specifications for left-hand line of page border

(com.sun.star.table.BorderLine structure)

 RightBorder (struct) – specifications for right-hand line of page border

(com.sun.star.table.BorderLine structure)

 TopBorder (struct) – specifications for top line of page border

(com.sun.star.table.BorderLine structure)

 BottomBorder (struct) – specifications for bottom line of page border

(com.sun.star.table.BorderLine structure)

 LeftBorderDistance (long) – distance between left-hand page border and page content
in hundredths of a millimeter

 RightBorderDistance (long) – distance between right-hand page border and page
content in hundredths of a millimeter

 TopBorderDistance (long) – distance between top page border and page content in
hundredths of a millimeter

 BottomBorderDistance (long) – distance between bottom page border and page content
in hundredths of a millimeter

128 StarOffice™ 6.0 Basic Programmer's Guide

 ShadowFormat (struct) – specifications for shadow of content area of page

(com.sun.star.table.ShadowFormat structure)

The following example sets the left and right-hand borders of the "Default" page style to 1
centimeter.

Dim Doc As Object

Dim Sheet As Object

Dim StyleFamilies As Object

Dim PageStyles As Object

Dim DefPage As Object

Doc = StarDesktop.CurrentComponent

StyleFamilies = Doc.StyleFamilies

PageStyles = StyleFamilies.getByName("PageStyles")

DefPage = PageStyles.getByName("Default")

DefPage.LeftMargin = 1000

DefPage.RightMargin = 1000

Headers and Footers

The headers and footers of a document form part of the page properties and are defined using the

com.sun.star.style.PageProperties service. The properties for formatting headers are:

 HeaderIsOn (Boolean) – header is activated

 HeaderLeftMargin (long) – distance between header and left-hand page margin in
hundredths of a millimeter.

 HeaderRightMargin (long) – distance between header and right-hand page margin in
hundredths of a millimeter

 HeaderBodyDistance (long) – distance between header and main body of document in
hundredths of a millimeter

 HeaderHeight (long) – height of header in hundredths of a millimeter

 HeaderIsDynamicHeight (Boolean) – height of header is automatically adapted to content

 HeaderLeftBorder (struct) - details of the left-hand border of frame around header

(com.sun.star.table.BorderLine structure)

 HeaderRightBorder (struct) - details of the right-hand border of frame around header

(com.sun.star.table.BorderLine structure)

 HeaderTopBorder (struct) - details of the top line of the border around header

(com.sun.star.table.BorderLine structure)

 HeaderBottomBorder (struct) - details of the bottom line of the border around header

(com.sun.star.table.BorderLine structure)

 HeaderLeftBorderDistance (long) – distance between left-hand border and content of
header in hundredths of a millimeter

Chapter 7 Spreadsheet Documents 129

 HeaderRightBorderDistance (long) – distance between right-hand border and content
of header in hundredths of a millimeter

 HeaderTopBorderDistance (long) – distance between top border and content of header
in hundredths of a millimeter

 HeaderBottomBorderDistance (long) – distance between bottom border and content of
header in hundredths of a millimeter

 HeaderIsShared (Boolean) – headers on even and odd pages have the same content (refer

to HeaderText, HeaderTextLeft and HeaderTextRight)

 HeaderBackColor (long) – background color of header

 HeaderBackGraphicURL (String) – URL of the background graphics that you want to use

 HeaderBackGraphicFilter (String) – name of the filter for interpreting the background
graphics for the header

 HeaderBackGraphicLocation (Enum) – position of the background graphics for the

header (value according to com.sun.star.style.GraphicLocation enumeration)

 HeaderBackTransparent (Boolean) – shows the background of the header as transparent

 HeaderShadowFormat (struct) – details of shadow of header

(com.sun.star.table.ShadowFormat structure)

The properties for formatting footers are:

 FooterIsOn (Boolean) – footer is activated

 FooterLeftMargin (long) – distance between footer and left-hand page margin in
hundredths of a millimeter

 FooterRightMargin (long) – distance between footer and right-hand page margin in
hundredths of a millimeter

 FooterBodyDistance (long) – distance between footer and main body of document in
hundredths of a millimeter

 FooterHeight (long) – height of footer in hundredths of a millimeter

 FooterIsDynamicHeight (Boolean) – height of footer is adapted automatically to the content

 FooterLeftBorder (struct) - details of left-hand line of border around footer

(com.sun.star.table.BorderLine structure)

 FooterRightBorder (struct) - details of right-hand line of border around footer

(com.sun.star.table.BorderLine structure)

 FooterTopBorder (struct) - details of top line of border around footer

(com.sun.star.table.BorderLine structure)

 FooterBottomBorder (struct) - details of bottom line of border around footer

(com.sun.star.table.BorderLine structure)

130 StarOffice™ 6.0 Basic Programmer's Guide

 FooterLeftBorderDistance (long) – distance between left-hand border and content of
footer in hundredths of a millimeter

 FooterRightBorderDistance (long) – distance between right-hand border and content
of footer in hundredths of a millimeter

 FooterTopBorderDistance (long) – distance between top border and content of footer in
hundredths of a millimeter

 FooterBottomBorderDistance (long) – distance between bottom border and content of
footer in hundredths of a millimeter

 FooterIsShared (Boolean) – the footers on the even and odd pages have the same content

(refer to FooterText, FooterTextLeft und FooterTextRight).

 FooterBackColor (long) – background color of footer

 FooterBackGraphicURL (String) – URL of the background graphics that you want to use

 FooterBackGraphicFilter (String) – name of the filter for interpreting the background
graphics for the footer

 FooterBackGraphicLocation (Enum) – position of background graphics for the footer

(value according to com.sun.star.style.GraphicLocation enumeration)

 FooterBackTransparent (Boolean) – shows the background of the footer as transparent

 FooterShadowFormat (struct) – details of shadow of footer

(com.sun.star.table.ShadowFormat structure)

Changing the Text of Headers and Footers

The content of headers and footers in a spreadsheet is accessed through the following properties:

 LeftPageHeaderContent (Object) – content of headers for even pages

(com.sun.star.sheet.HeaderFooterContent service)

 RightPageHeaderContent (Object) – content of headers for odd pages

(com.sun.star.sheet.HeaderFooterContent service)

 LeftPageFooterContent (Object) – content of footers for even pages

(com.sun.star.sheet.HeaderFooterContent service)

 RightPageFooterContent (Object) – content of footers for odd pages

(com.sun.star.sheet.HeaderFooterContent service)

If you do not need to distinguish between headers or footers for odd and even pages (the

FooterIsShared property is False), then set the properties for headers and footers on odd
pages.

All the named objects return an object that supports the

com.sun.star.sheet.HeaderFooterContent service. By means of the (non-genuine)

properties LeftText, CenterText, and RightText, this service provides three text elements for
the headers and footers of StarOffice Calc.

Chapter 7 Spreadsheet Documents 131

The following example writes the "Just a Test." value in the left-hand text field of the header from
the "Default" template.

Dim Doc As Object

Dim Sheet As Object

Dim StyleFamilies As Object

Dim PageStyles As Object

Dim DefPage As Object

Dim HText As Object

Dim HContent As Object

Doc = StarDesktop.CurrentComponent

StyleFamilies = Doc.StyleFamilies

PageStyles = StyleFamilies.getByName("PageStyles")

DefPage = PageStyles.getByName("Default")

DefPage.HeaderIsOn = True

HContent = DefPage.RightPageHeaderContent

HText = HContent.LeftText

HText.String = "Just a Test."

DefPage.RightPageHeaderContent = HContent

Note the last line in the example: Once the text is changed, the TextContent object must be
assigned to the header again so that the change is effective.

Another mechanism for changing the text of headers and footers is available for text documents
(StarOffice Writer) because these consist of a single block of text. The following properties are

defined in the com.sun.star.style.PageProperties service:

 HeaderText (Object) – text object with content of the header

(com.sun.star.text.XText service)

 HeaderTextLeft (Object) – text object with content of headers on left-hand pages

(com.sun.star.text.XText service)

 HeaderTextRight (Object) – text object with content of headers on right-hand pages

(com.sun.star.text.XText service)

 FooterText (Object) – text object with content of the footer

(com.sun.star.text.XText service)

 FooterTextLeft (Object) – text object with content of footers on left-hand pages

(com.sun.star.text.XText service)

 FooterTextRight (Object) – text object with content of footers on right-hand pages

(com.sun.star.text.XText service)

132 StarOffice™ 6.0 Basic Programmer's Guide

The following example creates a header in the "Default" page style for text documents and adds the
text "Just a Test" to the header.

Dim Doc As Object

Dim Sheet As Object

Dim StyleFamilies As Object

Dim PageStyles As Object

Dim DefPage As Object

Dim HText As Object

Doc = StarDesktop.CurrentComponent

StyleFamilies = Doc.StyleFamilies

PageStyles = StyleFamilies.getByName("PageStyles")

DefPage = PageStyles.getByName("Default")

DefPage.HeaderIsOn = True

HText = DefPage.HeaderText

HText.String = "Just a Test."

In this instance, access is provided directly through the HeaderText property of the page style

rather than the HeaderFooterContent object.

Centering (Spreadsheets Only)

The com.sun.star.sheet.TablePageStyle service is only used in StarOffice Calc page styles
and allows cell ranges that you want to printed to be centered on the page. This service provides
the following properties:

 CenterHorizontally (Boolean) – table content is centered horizontally

 CenterVertically (Boolean) – table content is centered vertically

Definition of Elements to be Printed (Spreadsheets Only)

When you format sheets, you can define whether page elements are visible. For this purpose, the

com.sun.star.sheet.TablePageStyle service provides the following properties:

 PrintAnnotations (Boolean) – prints cell comments

 PrintGrid (Boolean) – prints the cell gridlines

 PrintHeaders (Boolean) – prints the row and column headings

 PrintCharts (Boolean) – prints charts contained in a sheet

 PrintObjects (Boolean) – prints embedded objects

 PrintDrawing (Boolean) – prints draw objects

 PrintDownFirst (Boolean) – if the contents of a sheet extend across several pages, they
are first printed in vertically descending order, and then down the right-hand side.

 PrintFormulas (Boolean) – prints the formulas instead of the calculated values

 PrintZeroValues (Boolean) – prints the zero values

Chapter 7 Spreadsheet Documents 133

Editing Spreadsheet Documents Efficiently
Whereas the previous section described the main structure of spreadsheet documents, this section
describes the services that allow you to easily access individual cells or cell ranges.

Cell Ranges
In addition to an object for individual cells (com.sun.star.table.Cell service), StarOffice

also provides objects that represent cell ranges. Such CellRange objects are created using the

getCellRangeByName call of the spreadsheet object:

Dim Doc As Object

Dim Sheet As Object

Dim CellRange As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets.getByName("Sheet 1")

CellRange = Sheet.getCellRangeByName("A1:C15")

A colon (:) is used to specify a cell range in a spreadsheet document. For example, A1:C15
represents all the cells in rows 1 to 15 in columns A, B, and C.

The location of individual cells in a cell range can be determined using the getCellByPosition
method, where the coordinates of the top left cell in the cell range is (0, 0). The following example
uses this method to create an object of cell C3.

Dim Doc As Object

Dim Sheet As Object

Dim CellRange As Object

Dim Cell As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets.getByName("Sheet 1")

CellRange = Sheet.getCellRangeByName("B2:D4")

Cell = CellRange.GetCellByPosition(1, 1)

Formatting Cell Ranges

Just like individual cells, you can apply formatting to cell ranges using the

com.sun.star.table.CellProperties service. For more information and examples of this
service, see the Formatting section.

Computing With Cell Ranges

You can use the computeFunction method to perform mathematical operations on cell ranges.

The computeFunction expects a constant as the parameter that describes the mathematical
function that you want to use. The associated constants are defined in the

com.sun.star.sheet.GeneralFunction enumeration. The following values are available:

 SUM - sum of all numerical values

 COUNT - total number of all values (including non-numerical values)

134 StarOffice™ 6.0 Basic Programmer's Guide

 COUNTNUMS - total number of all numerical values

 AVERAGE - average of all numerical values

 MAX - largest numerical value

 MIN - smallest numerical value

 PRODUCT - product of all numerical values

 STDEV - standard deviation

 VAR - variance

 STDEVP - standard deviation based on the total population

 VARP - variance based on the total population

The following example computes the average value of the A1:C3 range and prints the result in a
message box:

Dim Doc As Object

Dim Sheet As Object

Dim CellRange As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets.getByName("Sheet 1")

CellRange = Sheet.getCellRangeByName("A1:C3")

MsgBox CellRange.computeFunction(com.sun.star.sheet.GeneralFunction.AVERAGE)

Deleting Cell Contents

The clearContents method simplifies the process of deleting cell contents and cell ranges in that
it deletes one specific type of content from a cell range.

The following example removes all the strings and the direct formatting information from the B2:C3
range.

Dim Doc As Object

Dim Sheet As Object

Dim CellRange As Object

Dim Flags As Long

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

CellRange = Sheet.getCellRangeByName("B2:C3")

Flags = com.sun.star.sheet.CellFlags.STRING + _

com.sun.star.sheet.CellFlags.HARDATTR

CellRange.clearContents(Flags)

Chapter 7 Spreadsheet Documents 135

The flags specified in clearContents come from the com.sun.star.sheet.CellFlags
constants list. This list provides the following elements:

 VALUE – numerical values that are not formatted as date or time

 DATETIME – numerical values that are formatted as date or time

 STRING - strings

 ANNOTATION – comments that are linked to cells

 FORMULA – formulas

 HARDATTR – direct formatting of cells

 STYLES – indirect formatting

 OBJECTS – drawing objects that are connected to cells

 EDITATTR – character formatting that only applies to parts of the cells

You can also add the constants together to delete different information using a call from

clearContents.

Searching and Replacing Cell Contents
Spreadsheet documents, like text documents, provide a function for searching and replacing.

The descriptor objects for searching and replacing in spreadsheet documents are not created

directly through the document object, but rather through the Sheets list. The following is an
example of a search and replace process:

Dim Doc As Object

Dim Sheet As Object

Dim ReplaceDescriptor As Object

Dim I As Integer

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

ReplaceDescriptor = Sheet.createReplaceDescriptor()

ReplaceDescriptor.SearchString = "is"

ReplaceDescriptor.ReplaceString = "was"

For I = 0 to Doc.Sheets.Count - 1

Sheet = Doc.Sheets(I)

Sheet.ReplaceAll(ReplaceDescriptor)

Next I

This example uses the first page of the document to create a ReplaceDescriptor and then
applies this to all pages in a loop.

136 StarOffice™ 6.0 Basic Programmer's Guide

Drawings and Presentations

This chapter provides an introduction to the macro-controlled creation and editing of drawings.
The first section describes the structure of drawings, including the basic elements that contain
drawings. The second section addresses more complex editing functions, such as grouping,
rotating, and scaling objects.

Information about creating, opening, and saving drawings can be found in Chapter 5, Working with
StarOffice Documents.

The Structure of Drawings
StarOffice does not limit the number of pages in a drawing document. You can design each page
separately. There is also no limit to the number of drawing elements that you can add to a page.

This picture is slightly complicated by the presence of layers. By default, each drawing document
contains the Layout, Controls, and Dimension Lines layers and all drawing elements are added to the
Layout layer. You also have the option to add new layers. See the StarOffice Developer's Guide for
more information about drawing layers.

Pages
The pages of a drawing document are available through the DrawPages list. You can access
individual pages either through their number or their name. If a document has one page and this is
called Slide 1, then the following examples are identical.

Example 1:

Dim Doc As Object

Dim Page As Object

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

Chapter 7 Spreadsheet Documents 137

Example 2:

Dim Doc As Object

Dim Page As Object

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages.getByName("Slide 1")

In example 1, the page is addressed by its number (counting begins at 0). In the second example,

the page is accessed by its name and the getByName method.

Dim sUrl As String, sFilter As String

Dim sOptions As String

Dim oSheets As Object, oSheet As Object

oSheets = oDocument.Sheets

If oSheets.hasByName("Link") Then

oSheet = oSheets.getByName("Link")

Else

oSheet = oDocument.createInstance("com.sun.star.sheet.Spreadsheet")

oSheets.insertByName("Link", oSheet)

oSheet.IsVisible = False

End If

The preceding call returns a page object that supports the com.sun.star.drawing.DrawPage
service. The service recognizes the following properties:

 BorderLeft (Long) – left-hand border in hundredths of a millimeter

 BorderRight (Long) – right-hand border in hundredths of a millimeter

 BorderTop (Long) – top border in hundredths of a millimeter

 BorderBottom (Long) – bottom border in hundredths of a millimeter

 Width (Long) – page width in hundredths of a millimeter

 Height (Long) – page height in hundredths of a millimeter

 Number (Short) – number of pages (numbering begins at 1), read-only

 Orientation (Enum) – page orientation (in accordance with

com.sun.star.view.PaperOrientation enumeration)

If these settings are changed, then all of the pages in the document are affected.

138 StarOffice™ 6.0 Basic Programmer's Guide

The following example sets the page size of a drawing document which has just been opened to 20
× 20 centimeters with a page margin of 0.5 centimeters:

Dim Doc As Object

Dim Page As Object

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

Page.BorderLeft = 500

Page.BorderRight = 500

Page.BorderTop = 500

Page.BorderBottom = 500

Page.Width = 20000

Page.Height = 20000

Elementary Properties of Drawing Objects
Drawing objects include shapes (rectangles, circles, and so on), lines, and text objects. All of these

share a number of common features and support the com.sun.star.drawing.Shape service.

This service defines the Size and Position properties of a drawing object.

StarOffice Basic also offers several other services through which you can modify such properties, as
formatting or apply fills. The formatting options that are available depend on the type of drawing
object.

The following example creates and inserts a rectangle in a drawing document:

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

Page.add(RectangleShape)

This example uses the StarDesktop.CurrentComponent call to determine which document is
open. The document object determined this way returns the first page of the drawing through the

drawPages(0) call.

The Point and Size structures with the point of origin (left hand corner) and the size of the
drawing object are then initialized. The lengths are specified in hundredths of a millimeter.

Chapter 7 Spreadsheet Documents 139

The program code then uses the Doc.createInstance call to create the rectangle drawing object

as specified by the com.sun.star.drawing.RectangleShape service. At the end, the drawing

object is assigned to a page using a Page.add call.

Fill Properties

This section describes four services and in each instance the sample program code uses a rectangle
shape element that combines several types of formatting. Fill properties are combined in the

com.sun.star.drawing.FillProperties service.

StarOffice recognizes four main types of formatting for a fill area. The simplest variant is a single-
color fill. The options for defining color gradients and hatches let you create other colors into play.
The fourth variant is the option of projecting existing graphics into the fill area.

The fill mode of a drawing object is defined using the FillStyle property. The permissible

values are defined in com.sun.star.drawing.FillStyle.

Single Color Fills

The main property for single-color fills is

 FillColor (Long) – fill color of area.

To use the fill mode, you must the FillStyle property to the SOLID fill mode.

140 StarOffice™ 6.0 Basic Programmer's Guide

The following example creates a rectangle shape and fills it with red (RGB value 255, 0, 0):

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

RectangleShape.FillStyle = com.sun.star.drawing.FillStyle.SOLID

RectangleShape.FillColor = RGB(255,0,0)

Page.add(RectangleShape)

Color Gradient

If you set the FillStyle property to GRADIENT, you can apply a color gradient to any fill area of
a StarOffice document.

If you want to apply a predefined color gradient, you can assign the associated name of the

FillTransparenceGradientName property. To define your own color gradient, you need to

complete a com.sun.star.awt.Gradient structure to assign the FillGradient property.
This property provides the following options:

 Style (Enum) - type of gradient, for example, linear or radial (default values in accordance

with com.sun.star.awt.GradientStyle)

 StartColor (Long) - start color of color gradient

 EndColor (Long) - end color of color gradient

 Angle (Short) - angle of color gradient in tenths of a degree

 XOffset (Short) - X-coordinate at which the color gradient starts, specified in hundredths of a
millimeter

 YOffset (Short) - Y-coordinate at which the color gradient begins, specified in hundredths of a
millimeter

 StartIntensity (Short) - intensity of StartColor as a percentage (in StarOffice Basic, you can
also specify values higher than 100 percent)

 EndIntensity (Short) - intensity of EndColor as a percentage (in StarOffice Basic, you can also
specify values higher than 100 percent)

Chapter 7 Spreadsheet Documents 141

 StepCount (Short) - number of color graduations which StarOffice is to calculate for the gradients

The following example demonstrates the use of color gradients with the aid of the

com.sun.star.awt.Gradient structure:

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Dim Gradient As New com.sun.star.awt.Gradient

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

Gradient.Style = com.sun.star.awt.GradientStyle.LINEAR

Gradient.StartColor = RGB(255,0,0)

Gradient.EndColor = RGB(0,255,0)

Gradient.StartIntensity = 150

Gradient.EndIntensity = 150

Gradient.Angle = 450

Gradient.StepCount = 100

RectangleShape.FillStyle = com.sun.star.drawing.FillStyle.GRADIENT

RectangleShape.FillGradient = Gradient

Page.add(RectangleShape)

This example creates a linear color gradient (Style = LINEAR). The gradient starts with red

(StartColor) in the top left corner, and extends at a 45 degree angle (Angle) to green

(EndColor) in the bottom right corner. The color intensity of the start and end colors is 150 percent

(StartIntensity and EndIntensity) which results in the colors seeming brighter than the

values specified in the StartColor and EndColor properties. The color gradient is depicted

using a hundred graduated individual colors (StepCount).

Hatches

To create a hatch fill, the FillStyle property must be set to HATCH. The program code for
defining the hatch is very similar to the code for color gradients. Again an auxiliary structure, in

this case com.sun.star.drawing.Hatch, is used to define the appearance of hatches. The
structure for hatches has the following properties:

 Style (Enum) - type of hatch: simple, squared, or squared with diagonals (default values in

accordance with com.sun.star.awt.HatchStyle)

142 StarOffice™ 6.0 Basic Programmer's Guide

 Color (Long) - color of lines

 Distance (Long) - distance between lines in hundredths of a millimeter

 Angle (Short) - angle of hatch in tenths of a degree

The following example demonstrates the use of a hatch structure:

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Dim Hatch As New com.sun.star.drawing.Hatch

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

RectangleShape.FillStyle = com.sun.star.drawing.FillStyle.HATCH

Hatch.Style = com.sun.star.drawing.HatchStyle.SINGLE

Hatch.Color = RGB(64,64,64)

Hatch.Distance = 20

Hatch.Angle = 450

RectangleShape.FillHatch = Hatch

Page.add(RectangleShape)

This code creates a simple hatch structure (HatchStyle = SINGLE) whose lines are rotated 45

degrees (Angle). The lines are dark gray (Color) and are spaced is 0.2 millimeters (Distance)
apart.

Bitmaps

To use bitmap projection as a fill, you must set the FillStyle property to BITMAP. If the bitmap

is already available in StarOffice, you just need to specify its name in the FillBitMapName

property and its display style (simple, tiled, or elongated) in the FillBitmapMode property

(default values in accordance with com.sun.star.drawing.BitmapMode).

If you want to use an external bitmap file, you can specify its URL in the FillBitmapURL
property.

Chapter 7 Spreadsheet Documents 143

The following example creates a rectangle and tiles the Sky bitmap that is available in StarOffice to
fill the area of the rectangle.

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

RectangleShape.FillStyle = com.sun.star.drawing.FillStyle.BITMAP

RectangleShape.FillBitmapName = "Sky"

RectangleShape.FillBitmapMode = com.sun.star.drawing.BitmapMode.REPEAT

Page.add(RectangleShape)

Transparency

You can adjust the transparency of any fill that you apply. The simplest way to change the

transparency of a drawing element is to use the FillTransparence property.

144 StarOffice™ 6.0 Basic Programmer's Guide

The following example creates a red rectangle with a transparency of 50 percent.

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

RectangleShape.FillStyle = com.sun.star.drawing.FillStyle.SOLID

RectangleShape.FillTransparence = 50

RectangleShape.FillColor = RGB(255,0,0)

Page.add(RectangleShape)

To make the fill transparent, set the FillTransparence property to 100.

In addition to the FillTransparence property, the

com.sun.star.drawing.FillProperties service also provides the

FillTransparenceGradient property. This is used to define a gradient that specifies the
transparency of a fill area.

Line Properties

All drawing objects that can have a border line support the

com.sun.star.drawing.LineStyle service. Some of the properties that this service provides
are:

 LineStyle (Enum) - line type (default values in accordance with

com.sun.star.drawing.LineStyle)

 LineColor (Long) - line color

 LineTransparence (Short) - line transparency

 LineWidth (Long) - line thickness in hundredths of a millimeter

 LineJoint (Enum) - transitions to connection points (default values in accordance with

com.sun.star.drawing.LineJoint)

Chapter 7 Spreadsheet Documents 145

The following example creates a rectangle with a solid border (LineStyle = SOLID) that is 5

millimeters thick (LineWidth) and 50 percent transparent. The right and left-hand edges of the

line extend to their points of intersect with each other (LineJoint = MITER) to form a right-angle.

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

RectangleShape.LineColor = RGB(128,128,128)

RectangleShape.LineTransparence = 50

RectangleShape.LineWidth = 500

RectangleShape.LineJoint = com.sun.star.drawing.LineJoint.MITER

RectangleShape.LineStyle = com.sun.star.drawing.LineStyle.SOLID

Page.add(RectangleShape)

In addition to the listed properties, the com.sun.star.drawing.LineStyle service provides
options for drawing dotted and dashed lines. For more information, see the StarOffice API
reference.

Text Properties (Drawing Objects)

The com.sun.star.style.CharacterProperties and

com.sun.star.style.ParagraphProperties services can format text in drawing objects.
These services relate to individual characters and paragraphs and are described in detail in
Chapter 6 (Text Documents).

146 StarOffice™ 6.0 Basic Programmer's Guide

The following example inserts text in a rectangle and formats the font

com.sun.star.style.CharacterProperties service.

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

Page.add(RectangleShape)

RectangleShape.String = "Das ist ein Test"

RectangleShape.CharWeight = com.sun.star.awt.FontWeight.BOLD

RectangleShape.CharFontName = "Arial"

This code uses the String-property of the rectangle to insert the text and the CharWeight and

CharFontName properties from the com.sun.star.style.CharacterProperties service to
format the text font.

The text can only be inserted after the drawing object has been added to the drawing page. You can

also use the com.sun.star.drawing.Text service to position and format text in drawing
object. The following are some of the important properties of this service:

 TextAutoGrowHeight (Boolean) - adapts the height of the drawing element to the text it
contains

 TextAutoGrowWidth (Boolean) - adapts the width of the drawing element to the text it
contains

 TextHorizontalAdjust (Enum) - horizontal position of text within the drawing element

(default values in accordance with com.sun.star.drawing.TextHorizontalAdjust)

 TextVerticalAdjust (Enum) - vertical position of text within the drawing element (default

values in accordance with com.sun.star.drawing.TextVerticalAdjust)

 TextLeftDistance (Long) - left-hand distance between drawing element and text in
hundredths of a millimeter

 TextRightDistance (Long) - right-hand distance between drawing element and text in
hundredths of a millimeter

 TextUpperDistance (Long) - upper distance between drawing element and text in
hundredths of a millimeter

 TextLowerDistance (Long) - lower distance between drawing element and text in
hundredths of a millimeter

Chapter 7 Spreadsheet Documents 147

The following example demonstrates use of the named properties.

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

Page.add(RectangleShape)

RectangleShape.String = "This is a test" ' May only take place after Page.add!

RectangleShape.TextVerticalAdjust = com.sun.star.drawing.TextVerticalAdjust.TOP

RectangleShape.TextHorizontalAdjust = com.sun.star.drawing.TextHorizontalAdjust.LEFT

RectangleShape.TextLeftDistance = 300

RectangleShape.TextRightDistance = 300

RectangleShape.TextUpperDistance = 300

RectangleShape.TextLowerDistance = 300

This code inserts a drawing element in a page and then adds text to the top left corner of the

drawing object using the TextVerticalAdjust and TextHorizontalAdjust properties. The
minimum distance between the text edge of the drawing object is set to three millimeters.

Shadow Properties

You can add a shadow to most drawing objects with the

com.sun.star.drawing.ShadowProperties service. The properties of this service are:

 Shadow (Boolean) - activates the shadow

 ShadowColor (Long) - shadow color

 ShadowTransparence (Short) - transparency of the shadow

 ShadowXDistance (Long) - vertical distance of the shadow from the drawing object in
hundredths of a millimeter

 ShadowYDistance (Long) - horizontal distance of the shadow from the drawing object in
hundredths of a millimeter

The following example creates a rectangle with a shadow that is vertically and horizontally offset
from the rectangle by 2 millimeters. The shadow is rendered in dark gray with 50 percent
transparency.

148 StarOffice™ 6.0 Basic Programmer's Guide

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

RectangleShape.Shadow = True

RectangleShape.ShadowColor = RGB(192,192,192)

RectangleShape.ShadowTransparence = 50

RectangleShape.ShadowXDistance = 200

RectangleShape.ShadowYDistance = 200

Page.add(RectangleShape)

An Overview of Various Drawing Objects

Rectangle Shapes

Rectangle shape objects (com.sun.star.drawing.RectangleShape) support the following
services for formatting objects:

 Fill properties – com.sun.star.drawing.FillProperties

 Line properties – com.sun.star.drawing.LineProperties

 Text properties – com.sun.star.drawing.Text (with

com.sun.star.style.CharacterProperties and

com.sun.star.style.ParagraphProperties)

 Shadow properties – com.sun.star.drawing.ShadowProperties

 CornerRadius (Long) – radius for rounding corners in hundredths of a millimeter

Circles and Ellipses

The Service com.sun.star.drawing.EllipseShape service is responsible for circles and
ellipses and supports the following services:

 Fill properties – com.sun.star.drawing.FillProperties

 Line properties – com.sun.star.drawing.LineProperties

Chapter 7 Spreadsheet Documents 149

 Text properties – com.sun.star.drawing.Text (with

com.sun.star.style.CharacterProperties and

com.sun.star.style.ParagraphProperties)

 Shadow properties – com.sun.star.drawing.ShadowProperties

In addition to these services, circles and ellipses also provide these properties:

 CircleKind (Enum) - type of circle or ellipse (default values in accordance with

com.sun.star.drawing.CircleKind)

 CircleStartAngle (Long) - start angle in tenths of a degree (only for circle or ellipse
segments)

 CircleEndAngle (Long) - end angle in tenths of a degree (only for circle or ellipse segments)

The CircleKind property determines if an object is a complete circle, a circular slice, or a section
of a circle. The following values are available:

 com.sun.star.drawing.CircleKind.FULL – full circle or full ellipse

 com.sun.star.drawing.CircleKind.CUT – section of circle (partial circle whose
interfaces are linked directly to one another)

 com.sun.star.drawing.CircleKind.SECTION – circle slice

 com.sun.star.drawing.CircleKind.ARC – angle (not including circle line)

The following example creates a circular slice with a 70 degree angle (produced from difference
between start angle of 20 degrees and end angle of 90 degrees)

Dim Doc As Object

Dim Page As Object

Dim EllipseShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

150 StarOffice™ 6.0 Basic Programmer's Guide

EllipseShape = Doc.createInstance("com.sun.star.drawing.EllipseShape")

EllipseShape.Size = Size

EllipseShape.Position = Point

EllipseShape.CircleStartAngle = 2000

EllipseShape.CircleEndAngle = 9000

EllipseShape.CircleKind = com.sun.star.drawing.CircleKind.SECTION

Page.add(EllipseShape)

Lines

StarOffice provides the com.sun.star.drawing.LineShape service for line objects. Line
objects support all of the general formatting services with the exception of areas. The following are

all of the properties that are associated with the LineShape service:

 Line properties – com.sun.star.drawing.LineProperties

 Text properties – com.sun.star.drawing.Text (with

com.sun.star.style.CharacterProperties and

com.sun.star.style.ParagraphProperties)

 Shadow properties – com.sun.star.drawing.ShadowProperties

The following example creates and formats a line with the help of the named properties. The origin

of the line is specified in the Location property, whereas the coordinates listed in the Size
property specify the end point of the line.

Dim Doc As Object

Dim Page As Object

Dim LineShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

LineShape = Doc.createInstance("com.sun.star.drawing.LineShape")

LineShape.Size = Size

LineShape.Position = Point

Page.add(LineShape)

Chapter 7 Spreadsheet Documents 151

Polypolygon Shapes

StarOffice also supports complex polygonal shapes through the

com.sun.star.drawing.PolyPolygonShape service. Strictly speaking, a PolyPolygon is not a
simple polygon but a multiple polygon. Several independent lists containing corner points can
therefore be specified and combined to form a complete object.

As with rectangle shapes, all the formatting properties of drawing objects are also provided for
polypolygons:

 Fill properties – com.sun.star.drawing.FillProperties

 Line properties – com.sun.star.drawing.LineProperties

 Text properties – com.sun.star.drawing.Text (with

com.sun.star.style.CharacterProperties and

com.sun.star.style.ParagraphProperties)

 Shadow properties – com.sun.star.drawing.ShadowProperties

The PolyPolygonShape service also has a property that lets you define the coordinates of a
polygon:

 PolyPolygon (Array) – field containing the coordinates of the polygon (double array with

points of the com.sun.star.awt.Point type)

The following example shows how you can define a triangle with the PolyPolygonShape
service.

Dim Doc As Object

Dim Page As Object

Dim PolyPolygonShape As Object

Dim PolyPolygon As Variant

Dim Coordinates(2) As New com.sun.star.awt.Point

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

PolyPolygonShape = Doc.createInstance("com.sun.star.drawing.PolyPolygonShape")

Page.add(PolyPolygonShape) ' Page.add must take place before the coordinates are set

Coordinates(0).x = 1000

Coordinates(1).x = 7500

Coordinates(2).x = 10000

Coordinates(0).y = 1000

Coordinates(1).y = 7500

Coordinates(2).y = 5000

PolyPolygonShape.PolyPolygon = Array(Coordinates())

Since the points of a polygon are defined as absolute values, you do not need to specify the size or
the start position of a polygon. Instead, you need to create an array of the points, package this array

in a second array (using the Array(Coordinates() call), and then assign this array to the
polygon. Before the corresponding call can be made, the polygon must be inserted into the
document.

152 StarOffice™ 6.0 Basic Programmer's Guide

The double array in the definition allows you to create complex shapes by merging several
polygons. For example, you can create a rectangle and then insert another rectangle inside it to
create a hole in the original rectangle:

Dim Doc As Object

Dim Page As Object

Dim PolyPolygonShape As Object

Dim PolyPolygon As Variant

Dim Square1(3) As New com.sun.star.awt.Point

Dim Square2(3) As New com.sun.star.awt.Point

Dim Square3(3) As New com.sun.star.awt.Point

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

PolyPolygonShape = Doc.createInstance("com.sun.star.drawing.PolyPolygonShape")

Page.add(PolyPolygonShape) ' Page.add must take place before the coordinates are set

Square1(0).x = 5000

Square1(1).x = 10000

Square1(2).x = 10000

Square1(3).x = 5000

Square1(0).y = 5000

Square1(1).y = 5000

Square1(2).y = 10000

Square1(3).y = 10000

Square2(0).x = 6500

Square2(1).x = 8500

Square2(2).x = 8500

Square2(3).x = 6500

Square2(0).y = 6500

Square2(1).y = 6500

Square2(2).y = 8500

Square2(3).y = 8500

Square3(0).x = 6500

Square3(1).x = 8500

Square3(2).x = 8500

Square3(3).x = 6500

Square3(0).y = 9000

Square3(1).y = 9000

Square3(2).y = 9500

Square3(3).y = 9500

PolyPolygonShape.PolyPolygon = Array(Square1(), Square2(), Square3())

With respect as to which areas are filled and which areas are holes, StarOffice applies a simple rule:
the edge of the outer shape is always the outer border of the polypolygon. The next line inwards is
the inner border of the shape and marks the transition to the first hole. If there is another line
inwards, it marks the transition to a filled area.

Chapter 7 Spreadsheet Documents 153

Graphics

The last of the drawing elements presented here are graphic objects that are based on the

com.sun.star.drawing.GraphicObjectShape service. These can be used with any graphic
within StarOffice whose appearance can be adapted using a whole range of properties.

Graphic objects support two of the general formatting properties:

 Text properties – com.sun.star.drawing.Text (with

com.sun.star.style.CharacterProperties and

com.sun.star.style.ParagraphProperties)

 Shadow properties – com.sun.star.drawing.ShadowProperties

Additional properties that are supported by graphic objects are:

 GraphicURL (String) - URL of the graphic

 AdjustLuminance (Short) - luminance of the colors, as a percentage (negative values are
also permitted)

 AdjustContrast (Short) - contrast as a percentage (negative values are also permitted)

 AdjustRed (Short) - red value as a percentage (negative values are also permitted)

 AdjustGreen (Short) - green value as a percentage (negative values are also permitted)

 AdjustBlue (Short) - blue value as a percentage (negative values are also permitted)

 Gamma (Short) - gamma value of a graphic

 Transparency (Short) - transparency of a graphic as a percentage

 GraphicColorMode (enum) - color mode, for example, standard, gray stages, black and

white (default value in accordance with com.sun.star.drawing.ColorMode)

154 StarOffice™ 6.0 Basic Programmer's Guide

The following example shows how to insert a page into a graphics object.Dim Doc As Object

Dim Page As Object

Dim GraphicObjectShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000 ' specifications, insignificant because latter

coordinates are binding

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

GraphicObjectShape = Doc.createInstance("com.sun.star.drawing.GraphicObjectShape")

GraphicObjectShape.Size = Size

GraphicObjectShape.Position = Point

GraphicObjectShape.GraphicURL = "file:///c:/test.jpg"

GraphicObjectShape.AdjustBlue = -50

GraphicObjectShape.AdjustGreen = 5

GraphicObjectShape.AdjustBlue = 10

GraphicObjectShape.AdjustContrast = 20

GraphicObjectShape.AdjustLuminance = 50

GraphicObjectShape.Transparency = 40

GraphicObjectShape.GraphicColorMode = com.sun.star.drawing.ColorMode.STANDARD

Page.add(GraphicObjectShape)

This code inserts the test.jpg graphic and adapts its appearance using the Adjust properties. In
this example, the graphics are depicted as 40 percent transparent with no other color conversions

do not take place (GraphicColorMode = STANDARD).

Chapter 7 Spreadsheet Documents 155

Editing Drawing Objects

Grouping Objects
In many situations, it is useful to group several individual drawing objects together so that they
behave as a single large object.

The following example combines two drawing objects:

Dim Doc As Object

Dim Page As Object

Dim Square As Object

Dim Circle As Object

Dim Shapes As Object

Dim Group As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Dim NewPos As New com.sun.star.awt.Point

Dim Height As Long

Dim Width As Long

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

Point.x = 3000

Point.y = 3000

Size.Width = 3000

Size.Height = 3000

' create square drawing element

Square = Doc.createInstance("com.sun.star.drawing.RectangleShape")

Square.Size = Size

Square.Position = Point

Square.FillColor = RGB(255,128,128)

Page.add(Square)

' create circle drawing element

Circle = Doc.createInstance("com.sun.star.drawing.EllipseShape")

Circle.Size = Size

Circle.Position = Point

Circle.FillColor = RGB(255,128,128)

Circle.FillColor = RGB(0,255,0)

Page.add(Circle)

' combine square and circle drawing elements

Shapes = createUnoService("com.sun.star.drawing.ShapeCollection")

Shapes.add(Square)

Shapes.add(Circle)

Group = Page.group(Shapes)

' centre combined drawing elements

Height = Page.Height

Width = Page.Width

NewPos.X = Width / 2

NewPos.Y = Height / 2

Height = Group.Size.Height

Width = Group.Size.Width

NewPos.X = NewPos.X - Width / 2

NewPos.Y = NewPos.Y - Height / 2

Group.Position = NewPos

156 StarOffice™ 6.0 Basic Programmer's Guide

This code creates a rectangle and a circle and inserts them into a page. It then creates an object that

supports the com.sun.star.drawing.ShapeCollection service and uses the Add method to

add the rectangle and the circle to this object. The ShapeCollection is added to the page using

the Group method and returns the actual Group object that can be edited like an individual

Shape.

If you want to format the individual objects of a group, apply the formatting before you add them
to the group. You cannot modify the objects once they are in the group.

Rotating and Shearing Drawing Objects
All of the drawing objects that are described in the previous sections can also be rotated and

sheared using the com.sun.star.drawing.RotationDescriptor service.

The service provides the following properties:

 RotateAngle (Long) – rotary angle in hundredths of a degree

 ShearAngle (Long) – shear angle in hundredths of a degree

The following example creates a rectangle and rotates it by 30 degrees using the RotateAngle
property:

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

RectangleShape.RotateAngle = 3000

Page.add(RectangleShape)

Chapter 7 Spreadsheet Documents 157

The next example creates the same rectangle as in the previous example, but instead shears it through

30 degrees using the ShearAngle property.

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

RectangleShape.ShearAngle = 3000

Page.add(RectangleShape)

Searching and Replacing
As in text documents, drawing documents provide a function for searching and replace. This
function is similar to the one that is used in text documents as described in Chapter 6, Text
Documents. However, in drawing documents the descriptor objects for searching and replacing are
not created directly through the document object, but rather through the associated character level.
The following example outlines the replacement process within a drawing:

Dim Doc As Object

Dim Page As Object

Dim ReplaceDescriptor As Object

Dim I As Integer

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

ReplaceDescriptor = Page.createReplaceDescriptor()

ReplaceDescriptor.SearchString = "is"

ReplaceDescriptor.ReplaceString = "was"

For I = 0 to Doc.drawPages.Count - 1

Page = Doc.drawPages(I)

Page.ReplaceAll(ReplaceDescriptor)

Next I

This code uses the first DrawPage of the document to create a ReplaceDescriptor and then
applies this descriptor in a loop to all of the pages in the drawing document.

158 StarOffice™ 6.0 Basic Programmer's Guide

Presentations
StarOffice presentations are based on drawing documents. Each page in the presentation is a slide.
You can access slides in the same way as a standard drawing is accessed through the DrawPages list
of the document object. The com.sun.star.presentation.PresentationDocument service,
responsible for presentation documents, also provides the complete
com.sun.star.drawing.DrawingDocument service.

Working With Presentations
In addition to the drawing functions that are provided by the Presentation property, the
presentation document has a presentation object that provides access to the main properties and
control mechanisms for presentations. For example, this object provides a start method that can
start presentations.

Dim Doc As Object

Dim Presentation As Object

Doc = StarDesktop.CurrentComponent

Presentation = Doc.Presentation

Presentation.start()

The code used in this example creates a Doc object that references the current presentation
document and establishes the associated presentation object. The start()method of the object is
used to start the example and run the screen presentation.

The following methods are provided as presentation objects:

 start - starts the presentation

 end - ends the presentation

 rehearseTimings - starts the presentation from the beginning and establishes its runtime

The following properties are also available:

 AllowAnimations (Boolean) – runs animations in the presentation

 CustomShow (String) – allows you to specify the name of the presentation so that you can
reference the name in the presentation

 FirstPage (String) – name of slide that you want to start the presentation with

 IsAlwaysOnTop (Boolean) – always displays the presentation window as the first window
on the screen

 IsAutomatic (Boolean) – automatically runs through the presentation

 IsEndless (Boolean) – restarts the presentation from the beginning once it ends

 IsFullScreen (Boolean) – automatically starts the presentation in full screen mode

 IsMouseVisible (Boolean) – displays the mouse during the presentation

 Pause (long) – the amount of time that a blank screen is displayed at the end of the
presentation

 StartWithNavigator (Boolean) – displays the navigator window when the presentation
starts

 UsePn (Boolean) – displays the pointer during the presentation

Chapter 7 Spreadsheet Documents 159

8 Diagrams (Charts)
StarOffice can display data as a diagram, which creates graphical links between data in the form of
bars, pie charts, lines or other elements. Data can either be displayed as 2D or 3D graphics, and the
appearance of the diagram elements can be individually adapted in a similar way to the process
used for drawing elements.

If the data is available in the form of a spreadsheet, then this can be dynamically linked to the
diagram. Any modifications made to the basic data can in this instance be seen immediately in the
assigned diagram. This chapter provides an overview of the programming interface for diagram
modules of StarOffice and focuses on the use of diagrams within spreadsheet documents.

Using Diagrams in Spreadsheets
Diagrams are not treated as independent documents in StarOffice, but as objects that are
embedded in an existing document.

While diagrams in text and drawing documents remain isolated from the content of the document,
when used in spreadsheet documents, a mechanism is provided which allows a link to be
established between the document data and embedded diagrams. The following example explains
the interaction between spreadsheet document and diagram:

Dim Doc As Object

Dim Charts As Object

Dim Chart as Object

Dim Rect As New com.sun.star.awt.Rectangle

Dim RangeAddress(0) As New com.sun.star.table.CellRangeAddress

Doc = StarDesktop.CurrentComponent

Charts = Doc.Sheets(0).Charts

Rect.X = 8000

Rect.Y = 1000

Rect.Width = 10000

Rect.Height = 7000

RangeAddress(0).Sheet = 0

RangeAddress(0).StartColumn = 0

RangeAddress(0).StartRow = 0

RangeAddress(0).EndColumn = 2

RangeAddress(0).EndRow = 12

Charts.addNewByName("MyChart", Rect, RangeAddress(), True, True)

161

CHAPTER 8

Although the code used in the example may appear to be complex, the central processes are limited

to three lines: the first central line creates the Doc document variable, which references the current

spreadsheet document (Doc line = StarDesktop.CurrentComponent). The code used in the

example then creates a list containing all charts of the first spreadsheet (Charts line =

Doc.Sheets(0).Charts). Finally, a new chart is added to the last line of this list using the

addNewByName method. This new chart is then visible to the user.

The last line initializes the Rect and RangeAddress auxiliary structures, which the

addNewByName method also provides as a parameter. Rect determines the position of the chart

within the spreadsheet. RangeAddress determines the range whose data is to be linked to the
chart.

The previous example creates a bar diagram. If a different type of graphic is needed, then the bar
diagram must be explicitly replaced:

Chart = Charts.getByName("MyChart").embeddedObject

Chart.Diagram = Chart.createInstance("com.sun.star.chart.LineDiagram")

The first lines defines the corresponding chart object. The second line replaces the current diagram
with a new one – in this example, a line diagram.

In Excel, a distinction is made between charts which have been inserted as a separate page in an Excel
document and charts which are embedded in a table page. Correspondingly, two different access methods
are defined there for charts. This distinction is not made in StarOffice Basic, because charts in StarOffice
Calc are always created as embedded objects of a table page. The charts are always accessed using the

Charts list of the associated Sheet object.

The Structure of Diagrams
The structure of a diagram – and therefore the list of services and interfaces supported by it –
depends on its type. The methods and properties of the Z-axis, are, for example, only available in
3D diagrams, but not in 2D diagrams. In pie charts, there are no interfaces for working with axes.

The Individual Elements of a Diagram

Title, Sub-title and Key

A title, sub-title and key form part of the basic elements of every diagram. Diagrams provide their

own objects for each of these elements. The Chart object provides the following properties for
administrating these elements:

 HasMainTitle (Boolean) – activates the title.

 Title (Object) – object with detailed information about the diagram title (supports the

com.sun.star.chart.ChartTitle service).

 HasSubTitle(Boolean) – activates the sub-title.

 Subtitle (Object) – object with detailed information about the diagram sub-title (supports

the com.sun.star.chart.ChartTitle service).

162 StarOffice™ 6.0 Basic Programmer's Guide

 HasLegend (Boolean) – activates the key.

 Legend (Object) – object with detailed information about the key to the diagram (supports the

com.sun.star.chart.ChartLegendPosition service).

In many respects, the elements specified correspond to a drawing element. This is due to the fact that

both the com.sun.star.chart.ChartTitle service and the

com.sun.star.chart.ChartLegendPosition support the com.sun.star.drawing.Shape
service, which forms the technical program basis for drawing elements.

Users therefore have the opportunity to determine the position and size of the element using the

Size and Position properties.

The other fill and line properties (com.sun.star.drawing.FillProperties and

com.sun.star.drawing.LineStyle services) as well as the character properties

(com.sun.star.style.CharacterProperties service) are provided for formatting the
elements.

com.sun.star.chart.ChartTitle contains not only the named format properties, but also
two other properties:

 TextRotation (Long) – angle of rotation of text in 100ths of a degree.

 String (String) – text which to be displayed as the title or sub-title.

The diagram key (com.sun.star.chart.ChartLegend service) contains the following
additional property:

 Alignment (Enum) – position at which the key appears (default value in accordance with

com.sun.star.chart.ChartLegendPosition).

Chapter 8 Diagrams (Charts) 163

The following example creates a diagram and assigns it the title "Test", the sub-title "Test 2" and a
key. The key has a gray background color, is placed at the bottom of the diagram, and has a
character size of 7 points.

Dim Doc As Object

Dim Charts As Object

Dim Chart as Object

Dim Rect As New com.sun.star.awt.Rectangle

Dim RangeAddress(0) As New com.sun.star.table.CellRangeAddress

Rect.X = 8000

Rect.Y = 1000

Rect.Width = 10000

Rect.Height = 7000

RangeAddress(0).Sheet = 0

RangeAddress(0).StartColumn = 0

RangeAddress(0).StartRow = 0

RangeAddress(0).EndColumn = 2

RangeAddress(0).EndRow = 12

Doc = StarDesktop.CurrentComponent

Charts = Doc.Sheets(0).Charts

Charts.addNewByName("MyChart", Rect, RangeAddress(), True, True)

Chart = Charts.getByName("MyChart").EmbeddedObject

Chart.HasMainTitle = True

Chart.Title.String = "Test"

Chart.HasSubTitle = True

Chart.Subtitle.String = "Test 2"

Chart.HasLegend = True

Chart.Legend.Alignment = com.sun.star.chart.ChartLegendPosition.BOTTOM

Chart.Legend.FillStyle = com.sun.star.drawing.FillStyle.SOLID

Chart.Legend.FillColor = RGB(210, 210, 210)

Chart.Legend.CharHeight = 7

Background

Every diagram has a background area. Every area has an object, which can be accessed using the
following properties of the diagram object:

 Area (Object) – background area of the diagram (supports

com.sun.star.chart.ChartArea service).

The background of a diagram covers its complete area, including the area under the title, sub-title

and diagram key. The associated com.sun.star.chart.ChartArea service supports line and
fill properties and provides no more extensive properties.

164 StarOffice™ 6.0 Basic Programmer's Guide

Diagram Walls and Floors

Although the diagram background covers the entire area of the diagram, the diagram back wall is
limited to the area directly behind the data area.

Two diagram walls usually exist for 3D diagrams: one behind the data area and one as the left-
hand demarcation to the Y-axis. 3D diagrams usually also have a floor.

 Floor (Object) – floor panel of the diagram (only for 3D diagrams, supports

com.sun.star.chart.ChartArea service).

 Wall (Object) – diagram walls (only for 3D diagrams, supports

com.sun.star.chart.ChartArea service).

The specified objects support the com.sun.star.chart.ChartArea service, which in turn

provides the usual fill and line properties (com.sun.star.drawing.FillProperties and

com.sun.star.drawing.LineStyle services, refer to Chapter 7).

The diagram walls and floor are accessed through the Chart object, which in turn is part of the

Chart object:

Chart.Area.FillBitmapName = "Sky"

The following example shows how graphics (named Sky) already contained in StarOffice can be
used as a background to a diagram.

Dim Doc As Object

Dim Charts As Object

Dim Chart as Object

Dim Rect As New com.sun.star.awt.Rectangle

Dim RangeAddress(0) As New com.sun.star.table.CellRangeAddress

Rect.X = 8000

Rect.Y = 1000

Rect.Width = 10000

Rect.Height = 7000

RangeAddress(0).Sheet = 0

RangeAddress(0).StartColumn = 0

RangeAddress(0).StartRow = 0

RangeAddress(0).EndColumn = 2

RangeAddress(0).EndRow = 12

Doc = StarDesktop.CurrentComponent

Charts = Doc.Sheets(0).Charts

Charts.addNewByName("MyChart", Rect, RangeAddress(), True, True)

Chart = Charts.getByName("MyChart").EmbeddedObject

Chart.Area.FillStyle = com.sun.star.drawing.FillStyle.BITMAP

Chart.Area.FillBitmapName = "Sky"

Chart.Area.FillBitmapMode = com.sun.star.drawing.BitmapMode.REPEAT

Chapter 8 Diagrams (Charts) 165

Axes

StarOffice recognizes five different axes that can be used in a diagram. In the simplest scenario,
these are the X and Y-axes. When working with 3D diagrams, a Z-axis is also sometimes provided.
For diagrams in which the values of the various rows of data deviate significantly from one
another, StarOffice provides a second X and Y-axis for second scaling operations.

First X, Y and Z-Axis

In addition to the actual axis, for each of the first X, Y and Z-axes there can also be a title, a
description, a grid, and an auxiliary grid. There is an option for displaying and concealing all of these
elements. The diagram object provides the following properties for administration of these features
(taking the example of a X-axis; properties for Y and Z-axis are structured in the same way):

 HasXAxis (Boolean) – activates the X-axis.

 XAxis (Object) – object with detailed information about the X-axis (supports

com.sun.star.chart.ChartAxis service).

 HasXAxisDescription (Boolean) – activates description for the X-axis.

 HasXAxisGrid (Boolean) – activates main grid for X-axis.

 XMainGrid (Object) – object with detailed information about main grid for X-axis (supports

com.sun.star.chart.ChartGrid service).

 HasXAxisHelpGrid (Boolean) – activates auxiliary grid for X-axis.

 XHelpGrid (Object) – object with detailed information about auxiliary grid for X-axis

(supports com.sun.star.chart.ChartGrid service).

 HasXAxisTitle (Boolean) – activates title of X-axis.

 XAxisTitle (Object) – object with detailed information about title of X-axis (supports

com.sun.star.chart.ChartTitle service).

Second X and Y-Axis

The following properties are available for the second X and Y-axes (properties taking example of
the second X-axis):

 HasSecondaryXAxis (Boolean) – activates the second X-axis.

 SecondaryXAxis (Object) – object with detailed information about the second X-axis

(supports com.sun.star.chart.ChartAxis service).

 HasSecondaryXAxisDescription (Boolean) – activates description of X-axis.

Properties of the Axes

The axis objects of a StarOffice diagram support the com.sun.star.chart.ChartAxis service.

In addition to the properties for characters (com.sun.star.style.CharacterProperties

166 StarOffice™ 6.0 Basic Programmer's Guide

service, refer to Chapter 6) and lines (com.sun.star.drawing.LineStyle service, refer to
Chapter 7), it provides the following properties:

 Max (Double) - maximum value for axis.

 Min (Double) - minimum value for axis.

 Origin (Double) - point of intersect for crossing axes.

 StepMain (Double) - distance between two primary lines of the axis.

 StepHelp (Double) - distance between two secondary lines of the axis.

 AutoMax (Boolean) - automatically determines maximum value for axis.

 AutoMin (Boolean) - automatically determines minimum value for axis.

 AutoOrigin (Boolean) - automatically determines point of intersect for crossing axes.

 AutoStepMain (Boolean) - automatically determines distance between primary lines of an
axis.

 AutoStepHelp (Boolean) - automatically determines distance between secondary lines of
an axis.

 Logarithmic (Boolean) - scales the axes in logarithmic manner (rather than linear manner).

 DisplayLabels (Boolean) - activates the text label for axes.

 TextRotation (Long) - angle of rotation of text label of axes in 100ths of a degree.

 Marks (Const) - constant that specifies whether the primary lines of the axis should be inside
or outside the diagram area (default values in accordance with

com.sun.star.chart.ChartAxisMarks)

 HelpMarks (Const) - constant that specifies whether the secondary lines of the axis should
be inside and/or outside the diagram area (default values in accordance with

com.sun.star.chart.ChartAxisMarks)

 Overlap (Long) - percentage which specifies the extent to which the bars of different sets of
data may overlap (at 100%, the bars are shown as completely overlapping, at -100%, there is a
distance of the width of one bar between them).

 GapWidth (long) - percentage which specifies the distance there may be between the different
groups of bars of a chart (at 100%, there is a distance corresponding to the width of one bar).

 ArrangeOrder (enum) - details of position of inscription; in addition to positioning on a line,
there is also the option of splitting the label alternately over two lines (default value according

to com.sun.star.chart.ChartAxisArrangeOrderType)

 TextBreak (Boolean) - permits line breaks.

 TextCanOverlap (Boolean) - permits text overlaps.

 NumberFormat (Long) - number format (refer to Chapter 7, Number, Date and Text Format
section)

Chapter 8 Diagrams (Charts) 167

Properties of the axis grid

The object for the axis grid is based on the com.sun.star.chart.ChartGrid service, which in

turn supports the line properties of the com.sun.star.drawing.LineStyle support service
(refer to Chapter 7).

Properties of the axis title

The objects for formatting the axis title are based on the com.sun.star.chart.ChartTitle
service, which is also used for diagram titles.

Example
The following example creates a line diagram. The color for the rear wall of the diagram is set to
white. Both the X and Y-axes have a gray auxiliary grid for visual orientation. The minimum value
of the Y-axis is fixed to 0 and the maximum value is fixed to 100 so that the resolution of the
diagram is retained even if the values are changed.

Dim Doc As Object

Dim Charts As Object

Dim Chart as Object

Dim Rect As New com.sun.star.awt.Rectangle

Dim RangeAddress(0) As New com.sun.star.table.CellRangeAddress

Doc = StarDesktop.CurrentComponent

Charts = Doc.Sheets(0).Charts

Rect.X = 8000

Rect.Y = 1000

Rect.Width = 10000

Rect.Height = 7000

RangeAddress(0).Sheet = 0

RangeAddress(0).StartColumn = 0

RangeAddress(0).StartRow = 0

RangeAddress(0).EndColumn = 2

RangeAddress(0).EndRow = 12

Charts.addNewByName("MyChart", Rect, RangeAddress(), True, True)

Chart = Charts.getByName("MyChart").embeddedObject

Chart.Diagram = Chart.createInstance("com.sun.star.chart.LineDiagram")

Chart.Diagram.Wall.FillColor = RGB(255, 255, 255)

Chart.Diagram.HasXAxisGrid = True

Chart.Diagram.XMainGrid.LineColor = RGB(192, 192, 192)

Chart.Diagram.HasYAxisGrid = True

Chart.Diagram.YMainGrid.LineColor = RGB(192, 192, 192)

Chart.Diagram.YAxis.Min = 0

Chart.Diagram.YAxis.Max = 100

168 StarOffice™ 6.0 Basic Programmer's Guide

3D Diagrams
Most diagrams in StarOffice can also be displayed with 3D graphics. All diagram types that

provide this option support the com.sun.star.chart.Dim3DDiagram. service. The service
provides just one property:

 Dim3D (Boolean) – activates 3D display.

Stacked Diagrams
Stacked diagrams are diagrams that are arranged with several individual values on top of one
another to produce a total value. This view shows not only the individual values, but also an
overview of all the values.

In StarOffice, various types of diagrams can be displayed in a stacked form. All of these diagrams

support the com.sun.star.chart.StackableDiagram service, which in turn provides the
following properties:

 Stacked (Boolean) – activates the stacked viewing mode.

 Percent (Boolean) – rather than absolute values, displays their percentage distribution.

Diagram Types

Line Diagrams
Line diagrams (Service com.sun.star.chart.LineDiagram) support one X-axis, two Y-axes
and one Z-axis. They can be displayed as 2D or 3D graphics

(com.sun.star.chart.Dim3Ddiagram service). The lines can be stacked

(com.sun.star.chart.StackableDiagram).

Line diagrams provide the following properties:

 SymbolType (const) - symbol for displaying the data points (constant in accordance with

com.sun.star.chart.ChartSymbolType).

 SymbolSize (Long) - size of symbol for displaying the data points in 100ths of a millimeter.

 SymbolBitmapURL (String) - file name of graphics for displaying the data points.

 Lines (Boolean) - links the data points by means of lines.

 SplineType (Long) - spline function for smoothing the lines (0: no spline function, 1: cubic
splines, 2: B splines).

 SplineOrder (Long) - polynomial weight for splines (only for B splines).

 SplineResolution (Long) - number of support points for spline calculation.

Chapter 8 Diagrams (Charts) 169

Area Diagrams
Area diagrams (com.sun.star.chart.AreaDiagram service) support one X-axis, two Y-axes
and one Z-axis. They can be displayed as 2D or 3D graphics

(com.sun.star.chart.Dim3Ddiagram service). The areas can be stacked

(com.sun.star.chart.StackableDiagram).

Bar Diagrams
Bar diagrams (Service com.sun.star.chart.BarDiagram) support one X-axis, two Y-axes and

one Z-axis. They can be displayed as 2D or 3D graphics (com.sun.star.chart.Dim3Ddiagram

service). The bars can be stacked (com.sun.star.chart.StackableDiagram).

They provide the following properties:

 Vertical (Boolean) – displays the bars vertically, otherwise they are depicted horizontally.

 Deep (Boolean) - in 3D viewing mode, positions the bars behind one another rather than
next to one another.

 StackedBarsConnected (Boolean) - links the associated bars in a stacked diagram by
means of lines (only available with horizontal charts).

 NumberOfLines (Long) - number of lines to be displayed in a stacked diagram as lines rather
than bars.

Pie Diagrams
Pie diagrams (com.sun.star.chart.PieDiagram service) do not contain any axes and cannot

be stacked. They can be displayed as 2D or 3D graphics (com.sun.star.chart.Dim3Ddiagram
service).

170 StarOffice™ 6.0 Basic Programmer's Guide

9 Database Access
StarOffice has an integrated database interface (independent of any systems) called Star Database
Connectivity (SDBC). The objective of developing this interface was to provide access to as many
different data sources as possible.

To make this possible, data sources are accessed by drivers. The sources from which the drivers
take their data is irrelevant to a SDBC user. Some drivers access file-based databases and take the
data directly from them. Others use standard interfaces such as JDBC or ODBC. There are,
however, also special drivers which access the MAPI address book, LDAP directories or StarOffice
spreadsheets as data sources.

Since the drivers are based on UNO components, other drivers can be developed and therefore
open up new data sources. You will find details about this in the StarOffice Developer's Guide.

In terms of its concept, SDBC is comparable with the ADO and DAO libraries available in VBA. It permits
high level access to databases, regardless of the underlying database backends.

The database interface of StarOffice has grown through the launch of StarOffice 6.0. Although in the past,

databases were primarily accessed using a range of methods of the Application object, the interface in

StarOffice 6.0 sub-divides into several objects. A DatabaseContext is used as the root object for the
database functions.

SQL: a Query Language
The SQL language is provided as a query language for users of SDBC. To compare the differences
between different SQL dialects, the SDBC components from StarOffice have their own SQL parser.
This uses the query window to check the SQL commands typed and corrects simple syntax errors,
such as those associated with uppercase and lowercase characters.

If a driver permits access to a data source that does not support SQL, then it must independently
convert the transferred SQL commands to the native access needed.

SQL implementation from SDBC is oriented towards the SQL-ANSI-Standard. Microsoft-specific

extensions, such as the INNER JOIN construct are not supported. These should be replaced with

standard commands (INNER JOIN, for example should be replaced with a corresponding WHERE clause).

171

CHAPTER 9

Types of Database Access
The database interface from StarOffice is available in the StarOffice Writer and StarOffice Calc
applications, as well as in the database forms.

In StarOffice Writer, standard letters can be created with the assistance of SDBC data sources and
these can then be printed out. There is also an option for moving data from the database window
into text documents using the drag-and-drop function.

If the user moves a database table into a spreadsheet, StarOffice creates a table area which can be
updated at the click of the mouse if the original data has been modified. Conversely, spreadsheet
data can be moved to a database table and a database import performed.

Finally, StarOffice provides a mechanism for forms based on databases. To do this, the user first
creates a standard StarOffice Writer or StarOffice Calc form and then links the fields to a database.

All the options specified here are based on the user interface from StarOffice. No programming
knowledge is needed to use the corresponding functions.

This chapter, however, provides little information about the functions specified, but instead
concentrates on the programming interface from SDBC, which allows for automated database
querying and therefore permits a much greater range of applications to be used.

Basic knowledge of the way in which databases function and the SQL query language is however
needed to fully understand the following sections.

Data Sources
A database is incorporated into StarOffice by creating what is commonly referred to as a data
source. The user interface provides a corresponding option for creating data sources in the Extras
menu. However, you also can create data sources and work with them using StarOffice Basic.

A database context object that is created using the createUnoService function serves as the
starting point for accessing a data source. This based on the

com.sun.star.sdb.DatabaseContext service and is the root object for all database
operations.

The following example shows how a database context can be created and then used to determine
the names of all data sources available. It displays the names in a message box.

Dim DatabaseContext As Object

Dim Names

Dim I As Integer

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")

Names = DatabaseContext.getElementNames()

For I = 0 To UBound(Names())

MsgBox Names(I)

Next I

The individual data sources are based on the com.sun.star.sdb.DataSource service and can

be determined from the database context using the getByName method:

172 StarOffice™ 6.0 Basic Programmer's Guide

Dim DatabaseContext As Object

Dim DataSource As Object

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")

DataSource = DatabaseContext.getByName("Customers")

The example creates a DataSource object for a data source called Customers.

Data sources provide a range of properties, which in turn provide general information about the
origin of the data and information about access methods. The properties are:

 Name (String) – name of data source.

 URL (String) – URL of data source in the form of jdbc: subprotocol : subname or sdbc:
subprotocol : subname.

 Info (Array) – array containing PropertyValue-pairs with connection parameters
(usually at least user name and password).

 User (String) – user name.

 Password (String) – user password (is not saved).

 IsPasswordRequired (Boolean) – the password is needed and is interactively requested
from user.

 IsReadOnly (Boolean) – permits read-only access to the database.

 NumberFormatsSupplier (Object) – object containing the number formats available for

the database (supports the com.sun.star.util.XNumberFormatsSupplier interface,
refer to Chapter 7, Number, Date and Text Format section).

 TableFilter (Array) – list of table names to be displayed.

 TableTypeFilter (Array) – list of table types to be displayed. Values available are TABLE,

VIEW and SYSTEM TABLE.

 SuppressVersionColumns (Boolean) - suppresses the display of columns that are used
for version administration.

The data sources from StarOffice are not 1:1 comparable with the data sources in ODBC. Whereas an ODBC
data source only covers information about the origin of the data, a data source in StarOffice also includes a
range of information about how the data is displayed within the database windows of StarOffice.

Queries
Predefined queries can be assigned to a data source. StarOffice notes the SQL commands of queries
so that they are available at all times. Queries are used to simplify working with databases because
they can be opened with a simple mouse click and also provide users without any knowledge of
SQL with the option of issuing SQL commands.

An object which supports the com.sun.star.sdb.QueryDefinition service is concealed

behind a query. The queries are accessed by means of the QueryDefinitions method of the data
source.

The following example lists the names of data source queries can be established in a message box.

Chapter 9 Database Access 173

Dim DatabaseContext As Object

Dim DataSource As Object

Dim QueryDefinitions As Object

Dim QueryDefinition As Object

Dim I As Integer

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")

DataSource = DatabaseContext.getByName("Customers")

QueryDefinitions = DataSource.getQueryDefinitions()

For I = 0 To QueryDefinitions.Count() - 1

QueryDefinition = QueryDefinitions(I)

MsgBox QueryDefinition.Name

Next I

In addition to the Name property used in the example, the

com.sun.star.sdb.QueryDefinition provides a whole range of other properties. These are:

 Name (String) – query name.

 Command (String) – SQL command (typically a SELECT command).

 UpdateTableName (String) – for queries that are based on several tables: name of table in
which value modifications are possible.

 UpdateCatalogName (String) – name of update tables catalogues.

 UpdateSchemaName (String) – name of update tables diagrams.

174 StarOffice™ 6.0 Basic Programmer's Guide

The following example shows how a query object can be created in a program-controlled manner
and can be assigned to a data source.

Dim DatabaseContext As Object

Dim DataSource As Object

Dim QueryDefinitions As Object

Dim QueryDefinition As Object

Dim I As Integer

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")

DataSource = DatabaseContext.getByName("Customers")

QueryDefinitions = DataSource.getQueryDefinitions()

QueryDefinition = createUnoService("com.sun.star.sdb.QueryDefinition")

QueryDefinition.Command = "SELECT * FROM Customer"

QueryDefinitions.insertByName("NewQuery", QueryDefinition)

The query object is first created using the createUnoService call, then initialized, and then

inserted into the QueryDefinitions object by means of insertByName.

Links with Database Forms
To simplify work with data sources, StarOffice provides an option for linking the data sources with

database forms. The links are available through the getBookmarks()method. This returns a

named container (com.sun.star.sdb.DefinitionContainer) which contains all links of the

data source. The bookmarks can either be accessed through Name or Index.

The following example determines the URL of the MyBookmark bookmark.

Dim DatabaseContext As Object

Dim DataSource As Object

Dim Bookmarks As Object

Dim URL As String

Dim I As Integer

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")

DataSource = DatabaseContext.getByName("Customers")

Bookmarks = DataSource.Bookmarks()

URL = Bookmarks.getByName("MyBookmark")

MsgBox URL

Chapter 9 Database Access 175

Database Access
A database connection is needed for access to a database. This is a transfer channel which permits
direct communication with the database. Unlike the data sources presented in the previous section,
the database connection must therefore be re-established every time the program is restarted.

StarOffice provides various ways of establishing database connections. Here is an explanation for
the method based on an existing data source.

Dim DatabaseContext As Object

Dim DataSource As Object

Dim Connection As Object

Dim InteractionHandler as Object

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")

DataSource = DatabaseContext.getByName("Customers")

If Not DataSource.IsPasswordRequired Then

Connection = DataSource.GetConnection("","")

Else

InteractionHandler = createUnoService("com.sun.star.sdb.InteractionHandler")

Connection = DataSource.ConnectWithCompletion(InteractionHandler)

End If

The code used in the example first checks whether the database is password protected. If not, it

creates the database connection required using the GetConnection call. The two empty strings
in the command line stand for the user name and password.

If the database is password protected, the example creates an InteractionHandler and opens

the database connection using the ConnectWithCompletion method. The InteractionHandler
ensures that StarOffice asks the user for the required login data.

Iteration of Tables
A table is usually accessed in StarOffice through the ResultSet object. A ResultSet is a type of

marker that indicates a current set of data within a volume of results obtained using the SELECT
command.

176 StarOffice™ 6.0 Basic Programmer's Guide

The example shows how a ResultSet can be used to query values from a database table.

Dim DatabaseContext As Object

Dim DataSource As Object

Dim Connection As Object

Dim InteractionHandler as Object

Dim Statement As Object

Dim ResultSet As Object

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")

DataSource = DatabaseContext.getByName("Customers")

If Not DataSource.IsPasswordRequired Then

Connection = DataSource.GetConnection("","")

Else

InteractionHandler = createUnoService("com.sun.star.sdb.InteractionHandler")

Connection = DataSource.ConnectWithCompletion(InteractionHandler)

End If

Statement = Connection.createStatement()

ResultSet = Statement.executeQuery("SELECT CustomerNumber FROM Customer")

If Not IsNull(ResultSet) Then

While ResultSet.next

MsgBox ResultSet.getString(1)

Wend

End If

Once the database connection has been established, the code used in the example first uses the

Connection.createObject call to create a Statement object. This Statement object then

uses the executeQuery call to return the actual ResultSet. The program now checks whether

the ResultSet actually exists and traverses the data records using a loop. The values required (in

the example, those from the CustomerNumber field) returns the ResultSet using the

getString method, whereby the parameter 1 determines that the call relates to the values of the
first column.

The ResultSet object from SDBC is comparable with the Recordset object from DAO and ADO, since
this also provides iterative access to a database.

The database is actually accessed in StarOffice 6.0 through a ResultSet object. This reflects the

content of a table or the result of a SQL-SELECT command. In the past, the ResultSet object provided

the resident methods in the Application object for navigation within the data

(e.g DataNextRecord).

Chapter 9 Database Access 177

Type-Specific Methods for Retrieving Values
As can be seen in the example from the previous section, StarOffice provides a getString
method for accessing table contents. The method provides the result in the form of a string. The

following get methods are available:

 getByte() – supports the SQL data types for numbers, characters and strings.

 getShort() – supports the SQL data types for numbers, characters and strings.

 getInt() – supports the SQL data types for numbers, characters and strings.

 getLong() – supports the SQL data types for numbers, characters and strings.

 getFloat() – supports the SQL data types for numbers, characters and strings.

 getDouble() – supports the SQL data types for numbers, characters and strings.

 getBoolean() – supports the SQL data types for numbers, characters and strings.

 getString() – supports all SQL data types.

 getBytes() – supports the SQL data types for binary values.

 getDate() – supports the SQL data types for numbers, strings, date and time stamp.

 getTime() – supports the SQL data types for numbers, strings, date and time stamp.

 getTimestamp() – supports the SQL data types for numbers, strings, date and time stamp.

 getCharacterStream() – supports the SQL data types for numbers, strings and binary values.

 getUnicodeStream() – supports the SQL data types for numbers, strings and binary values.

 getBinaryStream() – binary values.

 getObject() – supports all SQL data types.

In all instances, the number of columns should be listed as a parameter whose values should be
queried.

The ResultSet Variants
Accessing databases is often a matter of critical speed. StarOffice therefore provides several ways of

optimizing ResultSets and thereby controlling the speed of access. The more functions a ResultSet
provides, the more complex its implementation usually is and therefore the slower the functions are.

A simple ResultSet, such as that which was presented in the "Iteration of tables" section,
provides the minimum scope of functions available. It only allows iteration to be applied forward,
and for values to be interrogated. More extensive navigation options, such as the possibility of
modifying values, are therefore not included.

178 StarOffice™ 6.0 Basic Programmer's Guide

The Statement object used to create the ResultSet provides some properties which allow the

functions of the ResultSet to be influenced:

 ResultSetConcurrency (const) – specifications as to whether the data can be modified

(specifications in accordance with com.sun.star.sdbc.ResultSetConcurrency).

 ResultSetType (const) – specifications regarding type of ResultSets (specifications in

accordance with com.sun.star.sdbc.ResultSetType).

The values defined in com.sun.star.sdbc.ResultSetConcurrency are:

 UPDATABLE - ResultSet permits values to be modified.

 READ_ONLY – ResultSet does not permit modifications.

The com.sun.star.sdbc.ResultSetConcurrency group of constants provides the following
specifications:

 FORWARD_ONLY – ResultSet only permits forward navigation.

 SCROLL_INSENSITIVE – ResultSet permits any type of navigation, changes to the original
data are, however, not noted.

 SCROLL_SENSITIVE – ResultSet permits any type of navigation, changes to the original

data impact on the ResultSet.

A ResultSet containing the READ_ONLY and SCROLL_INSENSITIVE properties corresponds to a record

set of the Snapshot type in ADO and DAO.

When using the ResultSet’s UPDATEABLE and SCROLL_SENSITIVE properties, the scope of function

of a ResultSet is comparable with a Dynaset type Recordset from ADO and DAO.

Methods for Navigation in ResultSets
If a ResultSet is a SCROLL_INSENSITIVE or SCROLL_SENSITIVE type, it supports a whole
range of methods for navigation in the stock of data. The central methods are:

 next() – navigation to the next data record.

 previous() – navigation to the previous data record.

 first() – navigation to the first data record.

 last() – navigation to the last data record.

 beforeFirst() – navigation to before the first data record.

 afterLast() – navigation to after the last data record.

All methods return a Boolean parameter which specifies whether the navigation was successful.

Chapter 9 Database Access 179

To determine the current cursor position, the following test methods are provided and all return a
Boolean value:

 isBeforeFirst() – ResultSet is before the first data record.

 isAfterLast() – ResultSet is after the last data record.

 isFirst() – ResultSet is the first data record.

 isLast() – ResultSet is the last data record.

Modifying Data Records
If a ResultSet has been created with the ResultSetConcurrency = UPDATEABLE value, then
its content can be edited. This only applies for as long as the SQL command allows the data to be
re-written to the database (depends on principle). This is not, for example, possible with complex
SQL commands with linked columns or accumulated values.

The ResultSet object provides Update methods for modifying values, which are structured in

the same way as the get methods for retrieving values. The updateString method, for example,
allows a string to be written.

After modification, the values must be transferred into the database using the

updateRow()method. The call must take place before the next navigation command, otherwise
the values will be lost.

If an error is made during the modifications, this can be undone using the

cancelRowUpdates()method. This call is only available provided that the data has not be re-

written into the database using updateRow().

180 StarOffice™ 6.0 Basic Programmer's Guide

10 Dialogs
You can add custom dialog windows and forms to StarOffice documents. These in turn can be
linked to StarOffice Basic macros to considerably extend the usage range of StarOffice Basic.
Dialogs can, for example, display database information or guide users through a step-by-step
process of creating a new document in the form of an AutoPilot.

Working With Dialogs
StarOffice Basic dialogs consist of a dialog window that can contain text fields, list boxes, radio
buttons, and other control elements.

Creating Dialogs
You can create and structure dialogs using the StarOffice dialog editor that you can use in the same
way as a StarOffice Draw:

Essentially, you drag the control elements that you want from the design pallet (right) into the
dialog area where you can define their position and size.

The example shows a dialog that contains a label and a list box.

181

CHAPTER 10

You can open a dialog with the following code:

Dim Dlg As Object

DialogLibraries.LoadLibrary("Standard")

Dlg = CreateUnoDialog(DialogLibraries.Standard.DlgDef)

Dlg.Execute()

Dlg.dispose()

CreateUnoDialog creates an object called Dlg that references the associated dialog. Before you

can create the dialog, you must ensure that the library it uses (in this example, the Standard
library) is loaded. If not, the LoadLibrary method performs this task.

Once the Dlg dialog object has been initialized, you can use the Execute method to display the
dialog. Dialogs such as this one are described as modal because they do not permit any other
program action until they are closed. While this dialog is open, the program remains in the

Execute call.

The dispose method at the end of the code approves the resources used by the dialog once the
program ends.

Closing Dialogs

Closing With OK or Cancel

If a dialog contains an OK or a Cancel button, the dialog is automatically closed when you press
one of these buttons. More information about working with these buttons are discussed in this
Dialog Control Elements in Detail section of this chapter.

182 StarOffice™ 6.0 Basic Programmer's Guide

If you close a dialog by clicking the OK button, the Execute-method returns a return value of 1,
otherwise a value of 0 is returned.

Dim Dlg As Object

DialogLibraries.LoadLibrary("Standard")

Dlg = CreateUnoDialog(DialogLibraries.Standard.MyDialog)

Select Case Dlg.Execute()

Case 1

MsgBox "Ok pressed"

Case 0

MsgBox "Cancel pressed"

End Select

Closing With the Close Button in the Title Bar

If you want, you can close a dialog by clicking the close button on the title bar of the dialog

window. In this instance, the Execute method of the dialog returns the value 0, the same as
when you press the Cancel button.

Closing With an Explicit Program Call

You can also close an open dialog window with the endExecute method:

Dlg.endExecute()

Access to Individual Control Elements
A dialog can contain any number of control elements. You can access these elements through the

getControl method that returns the name of the control element.

Dim Ctl As Object

Ctl = Dlg.getControl("MyButton")

Ctl.Label = "New Label"

This code determines the object for the MyButton control element and then initializes the Ctl

object variable with a reference to the element. Finally the code sets the Label property of the

control element to the New Label value.

Note that StarOffice Basic distinguishes between uppercase and lowercase characters for the names
of control elements.

Chapter 10 Dialogs 183

Working With the Model of Dialogs and Control Elements
The division between visible program elements (View) and the data or documents behind them
(Model) occurs at many places in StarOffice API. In addition to the methods and properties of

control elements, both dialog and control element objects have a subordinate Model object. This
object allows you to directly access the content of a dialog or control element.

In dialogs, the distinction between data and depiction is not always as clear as in other API areas of
StarOffice. Elements of the API are available through both the View and the Model.

The Model property provides program-controlled access to the model of dialog and control
element objects.

Dim cmdNext As Object

cmdNext = Dlg.getControl("cmdNext")

cmdNext.Model.Enabled = False

This example deactivates the cmdNtext button in the Dlg dialog with the aid of the model object

from cmdNtext.

Properties
Name and Title
Every control element has its own name that can be queried using the following model property:

 Model.Name (String) – control element name

You can specify the title that appears in the title bar of a dialog with the following model property:

 Model.Title (String) – dialog title (only applies to dialogs).

Position and Size
You can query the size and position of a control element using the following properties of the
model object:

 Model.Height (long) – height of control element (in ma units)

 Model.Width (long) – width of control element (in ma units)

 Model.PositionX (long) – X-position of control element, measured from the left inner
edge of the dialog (in ma units)

 Model.PositionY (long) – Y-position of control element, measured from top inner edge of
the dialog (in ma units)

To ensure platform independence for the appearance of dialogs, StarOffice uses the Map AppFont
(ma) internal unit to specify the position and size within dialogs. A ma unit is defined as being one
eighth of the average height of a character from the system font defined in the operating system
and one quarter of its width. By using ma units, StarOffice ensures that a dialog looks the same on
different systems under different system settings.

184 StarOffice™ 6.0 Basic Programmer's Guide

If you want to change the size or position of control elements for runtime, determine the total size
of the dialog and adjust the values for the control elements to the corresponding part ratios.

The Map AppFont (ma) replaces the Twips unit to achieve better platform independence.

Focus and Tabulator Sequence
You can navigate through the control elements in any dialog by pressing the Tab key. The
following properties are available in this context in the control elements model:

 Model.Enabled (Boolean) – activates the control element

 Model.Tabstop (Boolean) – allows the control element to be reached through the Tab key

 Model.TabIndex (Long) – position of control element in the order of activation

Finally, the control element provides a getFocus method that ensures that the underlying control
element receives the focus:

 getFocus – control element receives the focus (only for dialogs)

Multi-Page Dialogs
A dialog in StarOffice can have more than one tab page. The Step property of a dialog defines the

current tab page of the dialog whereas the Step property for a control element specifies the tab
page where the control element is to be displayed.

The Step-value of 0 is a special case. If you set this value to zero in a dialog, all of the control

elements are visible regardless of their Step value. Similarly, if you set this value to zero for a
control element, the element is displayed on all of the tab pages in a dialog.

Chapter 10 Dialogs 185

In the preceding example, you can also assign the Step value of 0 to the dividing line as well as

the Cancel, Prev, Next, and Done buttons to display these elements on all pages. You can also

assign the elements to an individual tab page (for example page 1).

The following program code shows how the Step value in event handlers of the Next and Prev
buttons can be increased or reduced and changes the status of the buttons.

Sub cmdNext_Initiated

Dim cmdNext As Object

Dim cmdPrev As Object

cmdPrev = Dlg.getControl("cmdPrev")

cmdNext = Dlg.getControl("cmdNext")

cmdPrev.Model.Enabled = Not cmdPrev.Model.Enabled

cmdNext.Model.Enabled = False

Dlg.Model.Step = Dlg.Model.Step + 1

End Sub

Sub cmdPrev_Initiated

Dim cmdNext As Object

Dim cmdPrev As Object

cmdPrev = Dlg.getControl("cmdPrev")

cmdNext = Dlg.getControl("cmdNext")

cmdPrev.Model.Enabled = False

cmdNext.Model.Enabled = True

Dlg.Model.Step = Dlg.Model.Step - 1

End Sub

186 StarOffice™ 6.0 Basic Programmer's Guide

A global Dlg variable that references an open dialog must be included to make this example
possible. The dialog then changes its appearance as follows:

Page 1:

Page 2:

Events
StarOffice dialogs and forms are based on an event-oriented programming model where you can
assign event handlers to the control elements. An event handler runs a predefined procedure when a
particular action occurs, even when the action is another event. You can also edit documents or
open databases with event handling as well as access other control elements.

StarOffice control elements recognize different types of events that can be triggered in different
situations. These event types can be divided into four groups:

 Mouse control: Events that correspond to mouse actions (for example, simple mouse
movements or a click on a particular screen location)

 Keyboard control: Events that are triggered by keyboard strokes

Chapter 10 Dialogs 187

 Focus modification: Events that StarOffice perform when control elements are activated or
deactivated

 Control element-specific events: Events that only occur in relation to certain control elements

When you work with events, ensure that you create the associated dialog in the StarOffice
development environment and that it contains the required control elements or documents (if you
the events apply to a form).

The preceding figure shows the StarOffice Basic development environment with a dialog window
that contains two list boxes. You can move the data from one list to the other using the buttons
between the two list boxes.

If you want to display the layout on screen, then you should create the associated StarOffice Basic
procedures so that they can be called up by the event handlers. Even though you can use these
procedures in any module, it is best to limit their use to two modules. To make your code easier to
read, you should assign meaningful names to these procedures. Jumping directly to a general
program procedure from a macro can result in unclear code. Instead, to simplify code maintenance
and troubleshooting, you should create another procedure to serve as an entry point for event
handling - even if it only executes a single call to the target procedure.

The code in the following example moves an entry from the left to the right list box of a dialog.

188 StarOffice™ 6.0 Basic Programmer's Guide

Sub cmdSelect_Initiated

Dim objList As Object

lstEntries = Dlg.getControl("lstEntries")

lstSelection = Dlg.getControl("lstSelection")

If lstEntries.SelectedItem > 0 Then

lstSelection.AddItem(lstEntries.SelectedItem, 0)

lstEntries.removeItems(lstEntries.SelectedItemPos, 1)

Else

Beep

End If

End Sub

If this procedure was created in StarOffice Basic, you can assign it to an event required using the
property window of the dialog editor.

The assignment dialog lists all of the StarOffice Basic procedures. To assign a procedure to an
event, select the procedure, and then click Assign.

Parameters
The occurrence of a particular event is not always enough for an appropriate response. Additional
information may be required. For example, to process a mouse click, you may need the screen
position where the mouse button was pressed.

In StarOffice Basic, you can use object parameters to provide more information about an event to a
procedure, for example:

Sub ProcessEvent(Event As Object)

End Sub

The accuracy with which the Event object is structured and its properties depend on the type of
event that the procedure call triggers. The following sections describe event types in detail.

Regardless of the type of event, all objects provide access to the relevant control element and its
model. The control element can be reached using

Event.Source

Chapter 10 Dialogs 189

and its model using

Event.Source.Model

You can use these properties to trigger an event within an event handler.

Mouse Events
StarOffice Basic recognizes the following mouse events:

 Mouse moved – user moves mouse

 Mouse moved while key pressed – user drags mouse while holding down a key

 Mouse button pressed – user presses a mouse button

 Mouse button released – user releases a mouse button

 Mouse outside – user moves mouse outside of the current window

The structure of the associated event objects is defined in the com.sun.star.awt.MouseEvent
structure which provides the following information:

 Buttons (short) – button pressed (one or more constants in accordance with

com.sun.star.awt.MouseButton).

 X (long) – X-coordinate of mouse, measured in pixels from the top left corner of the control
element

 Y (long) – Y-coordinate of mouse, measured in pixels from the top left corner of the control
element

 ClickCount (long) – number of clicks associated with the mouse event (if StarOffice can
respond fast enough, ClickCount is also 1 for a double-click because only an individual event is
initiated).

The constants defined in com.sun.star.awt.MouseButton for the mouse buttons are:

 LEFT – left mouse button

 RIGHT – right mouse button

 MIDDLE – middle mouse button

190 StarOffice™ 6.0 Basic Programmer's Guide

The following example outputs the mouse position as well as the mouse button that was pressed:

Sub MouseUp(Event As Object)

Dim Msg As String

Msg = "Keys: "

If Event.Buttons AND com.sun.star.awt.MouseButton.LEFT Then

Msg = Msg & "LEFT "

End If

If Event.Buttons AND com.sun.star.awt.MouseButton.RIGHT Then

Msg = Msg & "RIGHT "

End If

If Event.Buttons AND com.sun.star.awt.MouseButton.MIDDLE Then

Msg = Msg & "MIDDLE "

End If

Msg = Msg & Chr(13) & "Position: "

Msg = Msg & Event.X & "/" & Event.Y

MsgBox Msg

End Sub

The VBA Click and Doubleclick events are not available in StarOffice Basic. Instead use the StarOffice

Basic MouseUp event for the the click event and imitate the Doubleclick event by changing the application
logic.

Keyboard Events
The following keyboard events are available in StarOffice Basic:

 Key pressed – user presses a key

 Key released – user releases a key

Both events relate to logical key actions and not to physical actions. If the user presses several keys
to output a single character (for example, to add an accent to a character), then StarOffice Basic
only creates one event.

A single key action on a modification key, such as the Shift key or the Alt key does not create an
independent event.

Information about a pressed key is provided by the event object that StarOffice Basic supplies to
the procedure for event handling. It contains the following properties:

 KeyCode (short) – code of the pressed key (default values in accordance with

com.sun.star.awt.Key)

 KeyChar (String) – character that is entered (taking the modification keys into
consideration)

Chapter 10 Dialogs 191

The following example uses the KeyCode property to establish if the Enter key, the Tab key, or one
of the other control keys has been pressed. If one of these keys has been pressed, the name of the
key is returns, otherwise the character that was typed is returned:

Sub KeyPressed(Event As Object)

Dim Msg As String

Select Case Event.KeyCode

Case com.sun.star.awt.Key.RETURN

Msg = "Return pressed"

Case com.sun.star.awt.Key.TAB

Msg = "Tab pressed"

Case com.sun.star.awt.Key.DELETE

Msg = "Delete pressed"

Case com.sun.star.awt.Key.ESCAPE

Msg = "Escape pressed"

Case com.sun.star.awt.Key.DOWN

Msg = "Down pressed"

Case com.sun.star.awt.Key.UP

Msg = "Up pressed"

Case com.sun.star.awt.Key.LEFT

Msg = "Left pressed"

Case com.sun.star.awt.Key.RIGHT

Msg = "Right pressed"

Case Else

Msg = "Character " & Event.KeyChar & " entered"

End Select

MsgBox Msg

End Sub

Information about other keyboard constants can be found in the API Reference under the

com.sun.star.awt.Key group of constants.

Focus Events
Focus events indicate if a control element receives or loses focus. You can use these events to, for
example, determine if a user has finished processing a control element so that you can update other
elements of a dialog. The following focus events are available:

 When receiving focus – element receives focus

 When losing focus – element loses focus

The Event objects for the focus events are structured as follows:

 FocusFlags (short) – cause of focus change (default value in accordance with

com.sun.star.awt.FocusChangeReason).

 NextFocus (Object) – object that receives focus (only for the When losing focus event)

 Temporary (Boolean) – the focus is temporarily lost

192 StarOffice™ 6.0 Basic Programmer's Guide

Control Element-Specific Events
In addition to the preceding events, which are supported by all control elements, there are also
some control element-specific events that are only defined for certain control elements. The most
important of these events are:

 When Item Changed – the value of a control element changes

 Item Status Changed – the status of a control element changes

 Text modified – the text of a control element changes

 When initiating – an action that can be performed when the control element is triggered
(for example, a button is pressed)

When you work with events, note that some events, such as the When initiating event, can be
initiated each time you click the mouse on some control elements (for example, on radio buttons). No
action is performed to check if the status of the control element has actually changed. To avoid such
“blind events”, save the old control element value in a global variable, and then check to see if the
value has changed when an event is executing.

The properties for the Item Status Changed event are:

 Selected (long) – currently selected entry

 Highlighted (long) – currently highlighted entry

 ItemId (long) – ID of entry

Dialog Control Elements in Detail
StarOffice Basic recognizes a range of control elements which can be divided into the following
groups:

Entry fields:

 Text fields

 Date fields

 Time fields

 Numerical fields

 Currency fields

 Fields adopting any format

Buttons:

 Standard buttons

 Checkboxes

 Radio Buttons

Chapter 10 Dialogs 193

Selection lists:

 List boxes

 Combo-boxes

Other control elements:

 Scrollbars (horizontal and vertical)

 Fields of groups

 Progress bars

 Dividing lines (horizontal and vertical)

 Graphics

 File selection fields

The most important of these control elements are presented below.

Buttons
A button performs an action when you click it.

The simplest scenario is for the button to trigger a When Initiating event when it is clicked by

a user. You can also link another action to the button to open a dialog using the PushButtonType
property. When you click a button that has this property set to the value of 0, the dialog remains
unaffected. If you click a button that has this property set to the value of 1, the dialog is closed, and

the Execute method of the dialog returns the value 1 (dialog sequence has been ended correctly).

If the PushButtonType has the value of 2, the dialog is closed and the Execute method of the
dialog returns the value 0 (dialog closed).

The following are all of the properties that are available through the button model:

 Model.BackgroundColor (long) – color of background

 Model.DefaultButton (Boolean) – The button is used as the default value and responds
to the Enter key if it has no focus.

 Model.FontDescriptor (struct) – structure that specifies the details of the font to be

used (in accordance with com.sun.star.awt.FontDescriptor structure)

 Model.Label (String) – label that is displayed on the button

 Model.Printable (Boolean) – the control element can be printed

 Model.TextColor (Long) – text color of the control element

 Model.HelpText (String) – help text that is displayed when you move the mouse cursor
over the control element

 Model.HelpURL (String) – URL of the online help for the corresponding control element

 PushButtonType (short) – action that is linked to the button (0: no action, 1: OK, 2: Cancel)

194 StarOffice™ 6.0 Basic Programmer's Guide

Option Buttons
These buttons are generally used in groups and allow you to select from one of several options.
When you select an option, all of the other options in the group are deactivated. This ensures that
at any one time, only one option button is set.

An option button control element provides two properties:

 State (Boolean) – activates the button

 Label (String) – label that is displayed on the button

You can also use the following properties from the model of the option buttons:

 Model.FontDescriptor (struct) – structure with details of the font to be used (in

accordance with com.sun.star.awt.FontDescriptor)

 Model.Label (String) - label that is displayed on the control element

 Model.Printable (Boolean) – control element can be printed

 Model.State (Short) – if this property is equal to 1, the option is activated, otherwise it is
deactivated

 Model.TextColor (Long) – text color of control element

 Model.HelpText (String) – help text that is displayed when the mouse cursor rests over
the control element

 Model.HelpURL (String) – URL of online help for the corresponding control element

To combine several option buttons in a group, you must position them one after another in the

activation sequence without any gaps (Model.TabIndex property, described as Order in the
dialog editor). If the activation sequence is interrupted by another control element, then StarOffice
automatically starts with a new control element group that can be activated regardless of the first
group of control elements.

Unlike VBA, you cannot insert option buttons in a group of control elements in StarOffice Basic. The
grouping of control elements in StarOffice Basic is only used to ensure a visual division by drawing a frame
around the control elements.

Checkboxes
Checkboxes are used to record a Yes or No value and depending on the mode, they can adopt two or
three states. In addition to the Yes and No states, a check box can have an in-between state if the
corresponding Yes or No status has more than one meaning or is unclear.

Checkboxes provide the following properties:

 State (Short) – state of the checkbox (0: no, 1: yes, 2: in-between state)

 Label (String) – label for the control element

 enableTriState (Boolean) – in addition to the activated and deactivated states, you can
also use the in-between state

The model object of a checkbox provides the following properties:

Chapter 10 Dialogs 195

 Model.FontDescriptor (struct) – structure with details of the font used (in accordance

with com.sun.star.awt.FontDescriptor structure)

 Model.Label (String) – label for the control element

 Model.Printable (Boolean) – the control element can be printed

 Model.State (Short) – state of the checkbox (0: no, 1: yes, 2: in-between state)

 Model.Tabstop (Boolean) – the control element can be reached with the Tab key

 Model.TextColor (Long) – text color of control element

 Model.HelpText (String) – help text that is displayed when you rest the mouse cursor
over the control element

 Model.HelpURL (String) – URL of online help for the corresponding control element

Text Fields
Text fields allow users to type numbers and text. The com.sun.star.awt.UnoControlEdit.
service forms the basis for text fields.

A text field can contain one or more lines and can be edited or blocked for user entries. Text fields
can also be used as special currency and numerical fields as well as screen fields for special tasks.

As these control elements are based on the UnoControlEdit Uno service, their program-
controlled handling is similar.

Text fields provide the following properties:

 Text (String) – current text

 SelectedText (String) – currently highlighted text

 Selection (Struct) – read-only highlighting of details (structure in accordance with

com.sun.star.awt.Selection, with the Min and Max properties to specify the start and
end of the current highlighting)

 MaxTextLen (short) – maximum number of characters that you can type in the field

 Editable (Boolean) – True activates the option for entering text, False blocks the entry

option (the property cannot be called up directly but only through IsEditable)

 IsEditable (Boolean) – the content of the control element can be changed, read-only.

Furthermore, the following properties are provided through the associated model object:

 Model.Align (short) – orientation of text (0: left-aligned, 1: centered, 2: right-aligned)

 Model.BackgroundColor (long) – color of the background of the control element

 Model.Border (short) – type of border (0: no border, 1: 3D border, 2: simple border)

 Model.EchoChar (String) – echo character for password fields

 Model.FontDescriptor (struct) – structure with details of font used (in accordance with

com.sun.star.awt.FontDescriptor structure)

196 StarOffice™ 6.0 Basic Programmer's Guide

 Model.HardLineBreaks (Boolean) – automatic line breaks are permanently inserted in
the control element text

 Model.HScroll (Boolean) –

 Model.MaxTextLen (Short) – maximum length of text, where 0 corresponds to no length
limit

 Model.MultiLine (Boolean) – permits entry to spans several lines

 Model.Printable (Boolean) – the control element can be printed

 Model.ReadOnly (Boolean) – the content of the control element is read-only

 Model.Tabstop (Boolean) – the control element can be reached with the Tab key

 Model.Text (String) – text associate with the control element

 Model.TextColor (Long) – text color of control element

 Model.VScroll (Boolean) – the text has a vertical scrollbar

 Model.HelpText (String) – help text that is displayed when the mouse cursor rests over
the control element

 Model.HelpURL (String) – URL of online help for the corresponding control element

List Boxes
List boxes (com.sun.star.awt.UnoControlListBox service) support the following properties:

 ItemCount (Short) – number of elements, read-only

 SelectedItem (String) – text of highlighted entry, read-only

 SelectedItems (Array Of Strings) – data field with highlighted entries, read-only

 SelectedItemPos (Short) – number of the entry highlighted at present, read-only

 SelectedItemsPos (Array of Short) – data field with the number of highlighted entries
(for lists which support multiple selection), read-only

 MultipleMode (Boolean) – True activates the option for multiple selection of entries,

False blocks multiple selections (the property cannot be called up directly but only through

IsMultipleMode)

 IsMultipleMode (Boolean) – permits multiple selection within lists, read-only

Chapter 10 Dialogs 197

List boxes provide the following methods:

 addItem (Item, Pos) – enters the string specified in the Item into the list at the Pos position

 addItems (ItemArray, Pos) – enters the entries listed in the string’s ItemArray data

field into the list at the Pos position

 removeItems (Pos, Count) – removes Count entries as of the Pos position

 selectItem (Item, SelectMode) – activates or deactivates highlighting for the element

specified in the string Item depending on the SelectMode Boolean variable

 makeVisible (Pos) – scrolls through the list field so that the entry specified with Pos is
visible

The model object of the list boxes provides the following properties:

 Model.BackgroundColor (long) – background color of control element

 Model.Border (short) – type of border (0: no border, 1: 3D border, 2: simple border)

 Model.FontDescriptor (struct) – structure with details of font used (in accordance with

com.sun.star.awt.FontDescriptor structure)

 Model.LineCount (Short) – number of lines in control element

 Model.MultiSelection (Boolean) – permits multiple selection of entries

 Model.SelectedItems (Array of Strings) – list of highlighted entries

 Model.StringItemList (Array of Strings) – list of all entries

 Model.Printable (Boolean) – the control element can be printed

 Model.ReadOnly (Boolean) – the content of the control element is read-only

 Model.Tabstop (Boolean) – the control element can be reached with the Tab key.

 Model.TextColor (Long) – text color of control element

 Model.HelpText (String) – automatically displayed help text which is displayed if the
mouse cursor is above the control element

 Model.HelpURL (String) – URL of online help for the corresponding control element

The VBA option for issuing list entries with a numerical additional value (ItemData) does not exist in
StarOffice Basic. If you want to administer a numerical value (for example a database ID) in addition to the
natural language text, you must create an auxiliary data field that administers in parallel to the list box.

198 StarOffice™ 6.0 Basic Programmer's Guide

11 Forms
In many respects, the structure of StarOffice-forms corresponds to the dialogs discussed in the
previous chapter. There are, however, a few key differences:

 Dialogs appear in the form of one single dialog window, which is displayed over the document
and does not permit any actions other than dialog processing until the dialog is ended. Forms,
on the other hand, are displayed directly in the document, just like drawing elements.

 A dialog editor is provided for creating dialogs, and this can be found in the StarOffice Basic
development environment. Forms are created using the Form Functions Toolbar directly
within the document.

 Whereas the dialog functions are available in all StarOffice documents, the full scope of the
form functions are only available in text and spreadsheets.

 The control elements of a form can be linked with an external database table. This function is
not available in dialogs.

 The control elements of dialogs and forms differ in several aspects.

Users who want to provide their forms with their own methods for event handling, should refer to
Chapter 10 (Dialogs). The mechanisms explained there are identical to those for forms.

Working with Forms
StarOffice forms may contain text fields, list boxes, radio buttons, and a range of other control
elements, which are inserted directly in a text or spreadsheet. The Form Functions Toolbar is used
for editing forms.

A StarOffice form may adopt one of two modes: the draft mode and the display mode. In draft
mode, the position of control elements can be changed and their properties can be edited using a
properties window.

The Form Functions Toolbar is also used to switch between modes.

199

CHAPTER 11

Determining Object Forms
StarOffice positions the control elements of a form at drawing object level. The actual object form

can be accessed through the Forms list at drawing level. The objects are accessed as follows in text
documents:

Dim Doc As Object

Dim DrawPage As Object

Dim Form As Object

Doc = StarDesktop.CurrentComponent

DrawPage = Doc.DrawPage

Form = DrawPage.Forms.GetByIndex(0)

The GetByIndex method returns the form with the index number 0.

When working with spreadsheets, an intermediate stage is needed the Sheets list because the
drawing levels are not located directly in the document but in the individual sheets:

Dim Doc As Object

Dim Sheet As Object

Dim DrawPage As Object

Dim Form As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets.GetByIndex(0)

DrawPage = Sheet.DrawPage

Form = DrawPage.Forms.GetByIndex(0)

As is already suggested by the GetByIndex method name, a document may contain several
forms. This is useful, for example, if the contents of different databases are displayed within one
document, or if a 1:n database relationship is displayed within a form. The option of creating sub-
forms is also provided for this purpose.

The Three Aspects of a Control Element Form
A control element of a form has three aspects:

 First, there is the Model of the control element. This is the key object for the StarOffice Basic-
programmer when working with control element forms.

 The counterpart to this is the View of the control element, which administers the display
information.

 Since control element forms within the documents are administered like a special drawing
element, there is also a Shape object which reflects the drawing element-specific properties of the
control element (in particular its position and size).

200 StarOffice™ 6.0 Basic Programmer's Guide

Accessing the Model of Control Element Forms
The models of the control elements of a form are available through the GetByName method of the

Object form:

Dim Doc As Object

Dim Form As Object

Dim Ctl As Object

Doc = StarDesktop.CurrentComponent

Form = Doc.DrawPage.Forms.GetByIndex(0)

Ctl = Form.getByName("MyListBox")

The example determines the model of the MyListBox control element, which is located in the first
form of the text document currently open.

If you is not sure of the form of a control element, you can use the option for searching through all
forms for the control element required:

Dim Doc As Object

Dim Forms As Object

Dim Form As Object

Dim Ctl As Object

Dim I as Integer

Doc = StarDesktop.CurrentComponent

Forms = Doc.Drawpage.Forms

For I = 0 To Forms.Count - 1

Form = Forms.GetbyIndex(I)

If Form.HasByName("MyListBox") Then

Ctl = Form.GetbyName("MyListBox")

Exit Function

End If

Next I

The example uses the HasByName method to check all forms of a text document to determine

whether they contain a control element model called MyListBox. If a corresponding model is

found, then a reference to this is saved in the Ctl variable and the search is terminated.

Chapter 11 Forms 201

Accessing the View of Control Element Forms
To access the view of a control element form, the associated model is first needed. The view of the
control element can then be determined with the assistance of the model and using the document
controller.

Dim Doc As Object

Dim DocCrl As Object

Dim Forms As Object

Dim Form As Object

Dim Ctl As Object

Dim CtlView As Object

Dim I as Integer

Doc = StarDesktop.CurrentComponent

DocCrl = Doc.getCurrentControler()
Forms = Doc.Drawpage.Forms

For I = 0 To Forms.Count - 1

Form = Forms.GetbyIndex(I)

If Form.HasByName("MyListBox") Then

Ctl = Form.GetbyName("MyListBox")

CtlView = DocCrl.GetControl(Ctl)
Exit Function

End If

Next I

The code listed in the example is very similar to the code listed in the previous example for

determining a control element model. It uses not only the Doc document object but also the

DocCrl document controller object which makes reference to the current document window. With
the help of this controller object and the model of the control element, it then uses the

GetControl method to determine the view (CtlView variable) of the control element form.

202 StarOffice™ 6.0 Basic Programmer's Guide

Accessing the Shape Object of Control Element Forms
The method for accessing the shape objects of a control element also uses the corresponding
drawing level of the document. To determine a special control element, all drawing elements of the
drawing level must be searched through.

Dim Doc As Object

Dim Shape as Object

Dim I as integer

Doc = StarDesktop.CurrentComponent

For i = 0 to Doc.DrawPage.Count - 1

Shape = Doc.DrawPage(i)

If HasUnoInterfaces(Shape, _

"com.sun.star.drawing.XControlShape") Then

If Shape.Control.Name = "MyListBox" Then

Exit Function

End If

End If

Next

The example checks all drawing elements to determine whether they support the

com.sun.star.drawing.XControlShape interface needed for control element forms. If this is

the case, the Control.Name property then checks whether the name of the control element is

MyListBox. If this is true, the function ends the search.

Determining the Size and Position of Control Elements

As already mentioned, the size and position of control elements can be determined using the

associated shape object. The control element shape, like all other shape objects, provides the

Size and Position properties for this purpose:

 Size (struct) – size of control element (com.sun.star.awt.Size data structure).

 Position (struct) – position of control element (com.sun.star.awt.Point data structure).

The following example shows how the position and size of a control element can be set using the

associated shape object:

Dim Shape As Object

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Shape.Size = Size

Shape.Position = Point

The shape object of the control element must already be known if the code is to function. If this is
not the case, it must be determined using the preceding code.

Chapter 11 Forms 203

Control Element Forms in Detail
The control elements available in forms are similar to those of dialogs. The selection ranges from
simple text fields through list and combo boxes to various buttons.

Below, you will find a list of the most important properties for control element forms. All
properties form part of the associated model objects.

In addition to the standard control elements, a table control element is also available for forms, which
enables the complete incorporation of database tables. This is described in the Database Forms section
in chapter 11.

Buttons
The model object of a form button provides the following properties:

 BackgroundColor (long) – background color.

 DefaultButton (Boolean) – the button serves as a default value. In this case, it also
responds to the entry button if it has no focus.

 Enabled (Boolean) – the control element can be activated.

 Tabstop (Boolean) – the control element can be reached through the tabulator button.

 TabIndex (Long) – position of control element in activation sequence.

 FontName (String) – name of font type.

 FontHeight (Single) – height of character in points (pt).

 Tag (String) – string containing additional information, which can be saved in the button
for program-controlled access.

 TargetURL (String) – target URL for buttons of the URL type.

 TargetFrame (String) – name of window (or frame) in which TargetURL is to be opened

when activating the button (for buttons of the URL type).

 Label (String) – button label.

 TextColor (Long) – text color of control element.

 HelpText (String) – automatically displayed help text which is displayed if the mouse
cursor is above the control element.

 HelpURL (String) – URL of online help for the corresponding control element.

 ButtonType (Enum) – action that is linked with the button (default value from

com.sun.star.form.FormButtonType).

204 StarOffice™ 6.0 Basic Programmer's Guide

Through the ButtonType property, you have the opportunity to define an action that is
automatically performed when the button is pressed. The associated

com.sun.star.form.FormButtonType group of constants provides the following values:

 PUSH – standard button.

 SUBMIT – end of form entry (particularly relevant for HTML forms).

 RESET – resets all values within the form to their original values.

 URL – call of the URL defined in TargetURL (is opened within the window which was
specified through TargetFrame).

The OK and Cancel button types provided in dialogs are not supported in forms.

Option Buttons
The following properties of an option button are available through its model object:

 Enabled (Boolean) – the control element can be activated.

 Tabstop (Boolean) – the control element can be reached through the tab key.

 TabIndex (Long) – position of control element in the activation sequence.

 FontName (String) – name of font type.

 FontHeight (Single) – height of character in points (pt).

 Tag (String) – string containing additional information, which can be saved in the button
for program-controlled access.

 Label (String) – inscription of button.

 Printable (Boolean) – the control element can be printed.

 State (Short) – if 1, the option is activated, otherwise it is deactivated.

 RefValue (String) – string for saving additional information (for example, for
administering data record IDs).

 TextColor (Long) – text color of control element.

 HelpText (String) – automatically displayed help text, which is displayed if the mouse
cursor is above the control element.

 HelpURL (String) – URL of online help for the corresponding control element.

The mechanism for grouping option buttons distinguishes between the control elements for dialogs and
forms. Whereas control elements appearing one after another in dialogs are automatically combined to
form a group, grouping in forms is performed on the basis of names. To do this, all option buttons of a
group must contain the same name. StarOffice combines the grouped control elements into an array so
that the individual buttons of a StarOffice Basic program can be reached in the same way as previously.

Chapter 11 Forms 205

The following example shows how the model of a control element group can be determined.

Dim Doc As Object

Dim Forms As Object

Dim Form As Object

Dim Ctl As Object

Dim I as Integer

Doc = StarDesktop.CurrentComponent

Forms = Doc.Drawpage.Forms

For I = 0 To Forms.Count - 1

Form = Forms.GetbyIndex(I)

If Form.HasByName("MyOptions") Then

Ctl = Form. GetGroupbyName("MyOptions")
Exit Function

End If

Next I

The code corresponds to the previous example for determining a simple control element model. It

searches through all forms in the current text document in a loop and uses the HasByName method

to check whether the corresponding form contains an element with the MyOptions name it is

searching for. If this is the case, then the model array is accessed using the GetGroupByName

method (rather than the GetByName method to determine simple models).

Checkboxes
The model object of a checkbox form provides the following properties:

 Enabled (Boolean) – the control element can be activated.

 Tabstop (Boolean) – the control element can be reached through the tab key.

 TabIndex (Long) – position of control element in the activation sequence.

 FontName (String) – name of font type.

 FontHeight (Single) – height of character in points (pt).

 Tag (String) – string containing additional information, which can be saved in the button
for program-controlled access.

 Label (String) – button label.

 Printable (Boolean) – the control element can be printed.

 State (Short) – if 1, the option is activated, otherwise it is deactivated.

 RefValue (String) – string for saving additional information (for example, for
administrating data record IDs).

 TextColor (Long) – text color of control element.

 HelpText (String) – automatically displayed help text, which is displayed if the mouse
cursor is above the control element.

 HelpURL (String) – URL of online help for the corresponding control element.

206 StarOffice™ 6.0 Basic Programmer's Guide

Text Fields
The model objects of text field forms offer the following properties:

 Align (short) – orientation of text (0: left-aligned, 1: centered, 2: right-aligned).

 BackgroundColor (long) – background color of control element.

 Border (short) – type of border (0: no border, 1: 3D border, 2: simple border).

 EchoChar (String) – echo character for password field.

 FontName (String) – name of font type.

 FontHeight (Single) – height of character in points (pt).

 HardLineBreaks (Boolean) – the automatic line breaks are permanently inserted in the
text of the control element.

 HScroll (Boolean) – the text has a horizontal scrollbar.

 MaxTextLen (Short) – maximum length of text; if 0 is specified, there are no limits.

 MultiLine (Boolean) – permits multi-line entries.

 Printable (Boolean) – the control element can be printed.

 ReadOnly (Boolean) – the content of the control element is read-only.

 Enabled (Boolean) – the control element can be activated.

 Tabstop (Boolean) – the control element can be reached through the tab key.

 TabIndex (Long) – position of the control element in the activation sequence.

 FontName (String) – name of font type.

 FontHeight (Single) – height of character in points (pt).

 Text (String) – text of control element.

 TextColor (Long) – text color of control element.

 VScroll (Boolean) – the text has a vertical scrollbar.

 HelpText (String) – automatically displayed help text, which is displayed if the mouse
cursor is above the control element.

 HelpURL (String) – URL of online help for the corresponding control element.

Chapter 11 Forms 207

List Boxes
The model object of the list box forms provides the following properties:

 BackgroundColor (long) – background color of control element.

 Border (short) – type of border (0: no border, 1: 3D frame, 2: simple frame).

 FontDescriptor (struct) – structure with details of font to be used (in accordance with

com.sun.star.awt.FontDescriptor structure).

 LineCount (Short) – number of lines of control element.

 MultiSelection (Boolean) – permits multiple selection of entries.

 SelectedItems (Array of Strings) – list of highlighted entries.

 StringItemList (Array of Strings) – list of all entries.

 ValueItemList (Array of Variant) – list containing additional information for each entry
(for example, for administrating data record IDs).

 Printable (Boolean) – the control element can be printed.

 ReadOnly (Boolean) – the content of the control element is read-only.

 Enabled (Boolean) – the control element can be activated.

 Tabstop (Boolean) – the control element can be reached through the tab key.

 TabIndex (Long) – position of control element in the activation sequence.

 FontName (String) – name of font type.

 FontHeight (Single) – height of character in points (pt).

 Tag (String) – string containing additional information which can be saved in the button for
program-controlled access.

 TextColor (Long) – text color of control element.

 HelpText (String) – automatically displayed help text, which is displayed if the mouse
cursor is above the control element.

 HelpURL (String) – URL of online help for the corresponding control element.

Through their ValueItemList property, list box forms provide a counterpart to the VBA property,

ItemData, through which you can administer additional information for individual list entries.

Furthermore, the following methods are provided though the view object of the list box:

 addItem (Item, Pos) – inserts the string specified in the Item at the Pos position in the list.

 addItems (ItemArray, Pos) – inserts the entries listed in the string’s ItemArray data

field in the list at the Pos position

 removeItems (Pos, Count) – removes Count entries as of the Pos position.

 selectItem (Item, SelectMode) – activates or deactivates the highlighting for the

element specified in the string Item depending on the SelectMode variable.

 makeVisible (Pos) – scrolls through the list field so that the entry specified by Pos is visible.

208 StarOffice™ 6.0 Basic Programmer's Guide

Database Forms
StarOffice forms can be directly linked to a database. The forms created in this way provide all the
functions of a full database front end without requiring independent programming work.

The user has the option of paging through and searching the selected tables and queries, as well as
changing data records and inserting new data records. StarOffice automatically ensures that the
relevant data is retrieved from the database, and that any changes made are written back to the
database.

A database form basically corresponds to a standard StarOffice form. In addition to the standard
properties, the following database-specific properties must also be set in the form:

 DataSourceName (String) – name of data source (refer to Chapter 9, Database Access;
Database access; the data source must be globally created in StarOffice).

 Command (String) – name of table, query, or the SQL select command to which a link is to
be made.

 CommandType (Const) - specifies whether the Command is a table, a query or a SQL

command (value from com.sun.star.sdb.CommandType enumeration).

The com.sun.star.sdb.CommandType enumeration covers the following values:

 TABLE – Table

 QUERY - Query

 COMMAND – SQL command

The database fields are assigned to the individual control elements through this property:

 DataField (String) – name of linked database field.

Tables
Another control element is provided for work with databases: the table control element. This
represents the content of a complete database table or query. In the simplest scenario, a table
control element is linked to a database using the autopilot form, which links all columns with the
relevant database fields in accordance with the user specifications. Because the associated API is
relatively complex, we shall not provide a complete description of the API at this point.

Chapter 11 Forms 209

210 StarOffice™ 6.0 Basic Programmer's Guide

12 Appendix

VBA Migrations Tips
List of words (Word) 91
List of sentences (Word) 91
List of characters (Word) 91
Font object (Excel, Word) 94
List of borders (Word) 94
Shading object (Word) 94
ParagraphFormat object (Word) 94
Range.MoveStart method (Word) 99
Range.MoveEnd method (Word) 99
Range.InsertBefore method (Word) 99
Range.InsertAfter method (Word) 99
Find object (Word) 105
Replacement object (Word) 105
Tables.Add method (Word) 108
Frames.Add method (Word) 113

Fields.Add method (Word) 115
List of columns (Excel) 124
List of rows (Excel) 124
Range.Insert method (Excel) 129
Range.Delete method (Excel) 129
Range.Copy method (Excel) 129
Interior object (Excel) 130
PageSetup object (Excel, Word) 133
Worksheet.ChartObjects (Excel) 170
ADO Library 179
Recordset object (DAO, ADO) 185
Snapshot object (ADO, DAO) 187
Dynaset object (ADO, DAO) 187
Dialogs 189
Twips 194

StarOffice 5.x Migration Tips
Documents.Open method 77
Document object 80
Border object 94
Paragraph object 94
Font object 94
SearchSettings object 105
List of tables 109
DeleteUserField method 116
InsertField method 116
SetCurField method 116
Application.OpenTableConnection method 185
Application.DataNextRecord method 185

211

Index

A
AdjustBlue 162
AdjustContrast 162
AdjustGreen 162
AdjustLuminance 162
AdjustRed 162
afterLast 187
Alignment 171
AllowAnimations 167
AnchorType 107
AnchorTypes 107
Annotations

as field in text documents 118
ANSI 18
API Reference 71
Area 172
Area Diagrams 178
ArrangeOrder 175
Arrays

checking 47
dynamic size changes 26
multi-dimensional 26
simple 25
Specified Value for Start Index 26

arrays 25
ASCII 17
AsTemplate 79
Author 118
AutoMax 175
AutoMin 175
AutoOrigin 175
AutoStepHelp 175
AutoStepMain 175
Axes

of diagrams 174

B
BackColor 109f., 113, 133
BackGraphicFilter 133
BackGraphicLocation 133
BackGraphicURL 133
BackTransparent 133
Bar Diagrams 178
Beep 64
beforeFirst 187
Bitmaps 151
Bookmark

com.sun.star.Text 119
in text documents 119

Boolean values
converting 46

Boolean variables
comparing 32
declaring 24
linking 31

BorderBottom 146
BorderLeft 146
BorderRight 146
BorderTop 146
BottomBorder 135
BottomBorderDistance 135
BottomMargin 109, 113, 135
Buttons

of dialogues 204
of forms 214

ByRef 40
ByVal 40

213

C
cancelRowUpdates 188
CBool 46
CDate 46
CDbl 46
Cell Properties 130
Cell Ranges 141
cell template 86
CellAddress

com.sun.star.table 129
CellBackColor 130
CellContentType

com.sun.star.table 126
CellFlags

com.sun.star.sheet 143
CellProperties

com.sun.star.table 130
CellRangeAddress

com.sun.star.table 127
Cells 125
CenterHorizontally 140
CenterVertically 140
Chapter name

as field in text documents 118
Chapter number

as field in text documents 118
ChapterFormat 118
character element templates 86
Character Properties 94
character templates 86
CharacterProperties

com.sun.star.style 94
CharacterSet 79, 83
CharBackColor 94
CharColor 94
CharFontName 94
CharHeight 94
CharKeepTogether 94
CharStyleName 94
CharUnderline 94
CharWeight 94
Checkboxes

of dialogues 205
of forms 216

CInt 46
CircleEndAngle 158

CircleKind 158
Circles 157
CircleStartAngle 158
CLng 46
Close 59
Code Pages 18
collapseToEnd 101
collapseToStart 101
Collate 84
Color Gradient 149
Columns

in spreadsheets 123
Command 182
Comments 14
Comparison Operators 32
Constants 31
Content 118
Control Codes 103
Conversion Functions 45
ConvertFromUrl 76
ConvertToUrl 76
CopyCount 84
copyRange 128
CornerRadius 157
createTextCursor 99
CreateUnoDialog 190
CSng 46
CStr 46
Currency 21
Current page

as field in text documents 117
CustomShow 167

D
DatabaseContext

com.sun.star.sdb 180
Date 24, 118
Date

current system date 54
Date and time details

as field in text documents 118
checking 47
comparing 32
converting 46
declaring 24
editing 52

214 StarOffice™ 6.0 Basic Programmer's Guide

formatting in spreadsheets 132
linking 31
System date and time 54

DateTimeValue 118
Day 53
DBG_methods 70
DBG_properties 70
DBG_supportetInterfaces 70
Deep 178
Defining printer paper tray 134
Desktop

com.sun.star.frame 75
Dim 16
Dim3D 177
Dir 55
Direct formatting 93, 97
Displaying Messages 61
DisplayLabels 175
dispose 190
Do...Loop 36
Documents

creating 80
exporting 81
importing 77
opening 77
printing 83
saving 81

Double 21
DrawPages 145

E
Editing directories 56
Editing files 55
Editing text files 59
Ellipses 157
EllipseShape

com.sun.star.drawing 157
end 167
endExecute 191
Environ 65
Eof 61
Error Handling 42
Events

for dialogue and forms 197
Execute 190

return values 191

Exit Function 39
Exit Sub 39
Exponential Writing Style 23

F
file:/// 76
FileCopy 57
FileDateTime 58
FileLen 58
FileName 84
Fill Properties 148
FillBitmapURL 151
FillColor 148
FillTransparence 152
FilterName 79, 83
FilterOptions 79, 83
first 187
FirstPage 167
Floor 173
FooterBackColor 138
FooterBackGraphicFilter 138
FooterBackGraphicLocation 138
FooterBackGraphicURL 138
FooterBackTransparent 138
FooterBodyDistance 137
FooterBottomBorder 137
FooterBottomBorderDistance 138
FooterHeight 137
FooterIsDynamicHeight 137
FooterIsOn 137
FooterIsShared 138
FooterLeftBorder 137
FooterLeftBorderDistance 138
FooterLeftMargin 137
FooterRightBorder 137
FooterRightBorderDistance 138
FooterRightMargin 137
Footers 136
FooterShadowFormat 138
FooterText 139
FooterTextLeft 139
FooterTextRight 139
FooterTopBorder 137
FooterTopBorderDistance 138
For...Next 34
Format 51

Index 215

frame templates 86
Function 38
Functions 38

G
Gamma 162
GapWidth 175
GeneralFunction

com.sun.star.sheet 141
GetAttr 57
getColumns 110
getControl 191
getCurrentControler 212
getElementNames 72
getPropertyState 97
getRows 110
getTextTables 108
Global 29
goLeft 100
goRight 100
gotoEnd 100
gotoEndOfParagraph 100
gotoEndOfSentence 100
gotoEndOfWord 100
gotoNextParagraph 100
gotoNextSentence 100
gotoNextWord 100
gotoPreviousParagraph 100
gotoPreviousSentence 100
gotoPreviousWord 100
gotoRange 100
gotoStart 100
gotoStartOfParagraph 100
gotoStartOfSentence 100
gotoStartOfWord 100
Gradient

com.sun.star.awt 149
GraphicColorMode 162
Graphics 162
GraphicURL 162

H
hasByName 72
HasLegend 171
hasLocation 81
HasMainTitle 170

hasMoreElements 74
HasSecondaryXAxis 174
HasSecondaryXAxisDescription 174
HasSubTitle 170
HasUnoInterfaces 213
HasXAxis 174
HasXAxisDescription 174
HasXAxisGrid 174
HasXAxisHelpGrid 174
HasXAxisTitle 174
Hatch

com.sun.star.drawing 150
Hatches 150
HeaderBackColor 137
HeaderBackGraphicFilter 137
HeaderBackGraphicLocation 137
HeaderBackGraphicURL 137
HeaderBackTransparent 137
HeaderBodyDistance 136
HeaderBottomBorder 136
HeaderBottomBorderDistance 137
HeaderFooterContent

com.sun.star.sheet 138
HeaderHeight 136
HeaderIsDynamicHeight 136
HeaderIsOn 136
HeaderIsShared 137
HeaderLeftBorder 136
HeaderLeftBorderDistance 136
HeaderLeftMargin 136
HeaderRightBorder 136
HeaderRightBorderDistance 137
HeaderRightMargin 136
Headers 136
HeaderShadowFormat 137
HeaderText 139
HeaderTextLeft 139
HeaderTextRight 139
HeaderTopBorder 136
HeaderTopBorderDistance 137
Height 110, 113, 123, 133, 146
HelpMarks 175
Hexadecimal Values 23
HoriJustify 131
HoriOrient 113
Hour 53

216 StarOffice™ 6.0 Basic Programmer's Guide

I
If...Then...Else 32
Imitated properties 68
Indirect formatting 93, 97
Info 181
initialize 108
Input Box 64
InputBox 64
insertByIndex 74
insertByName 73
insertCell 127
insertTextContent 107f.
InStr 50
Integer 20
Interfaces 69
isAfterLast 188
IsAlwaysOnTop 167
IsArray 47
IsAutoHeight 110
IsAutomatic 167
isBeforeFirst 188
IsCellBackgroundTransparent 130
isCollapsed 101
IsDate 47, 118
IsEndless 167
isEndOfParagraph 101
isEndOfSentence 100
isEndOfWord 100
isFirst 188
IsFixed 118
IsFullScreen 167
IsLandscape 133
isLast 188
isModified 81
IsMouseVisible 167
IsNumeric 47
IsPasswordRequired 181
IsReadOnly 181
isReadonly 81
IsStartOfNewPage 123
isStartOfParagraph 101
isStartOfSentence 100
isStartOfWord 100
IsTextWrapped 131
IsVisible 122f.

J
JDBC 179
JumpMark 79

K
Key

of diagrams 170
Kill 57

L
last 187
layers 145
Left 49
LeftBorder 135
LeftBorderDistance 135
LeftMargin 109, 113, 135
LeftPageFooterContent 138
LeftPageHeaderContent 138
Legend 171
Len 49
Level 118
Line break

in program code 13
in strings 17

line break 103
Line Diagrams 177
LineColor 153
LineJoint 153
Lines 159, 177
LineStyle 153
LineStyle

com.sun.star.drawing 153
LineTransparence 153
LineWidth 153
List boxes

of dialogues 207
of forms 218

loadComponentFromURL 75
LoadLibrary 190
Logarithmic 175
Logical Operators 31
Long 20
Loops 34

M
Map AppFont 193

Index 217

Markers 14
Marks 175
Mathematical Operators 31
Max 175
Methods 69
Mid 49, 51
Min 175
Minute 53
MkDir 56
Module 69
Month 53
moveRange 128
MsgBox 61

N
Name 57, 84, 181f.
next 187
nextElement 74
Now 54
Number 146
Number of characters

as field in text documents 117
Number of words

as field in text documents 117
NumberFormat 118, 132, 176
NumberFormatsSupplier 181
numbering templates 86
NumberingType 117
NumberOfLines 178
Numbers

checking 47
comparing 32
converting 46
declaring 20
formatting 51
linking 31

O
Octal Values 23
ODBC 179
Offset 117
On Error 42
Open ... For 59
Operators 31

comparable 32
logical 31

mathematical 31
mathematical operators 31

OptimalHeight 123
OptimalWidth 123
Option Buttons

of dialogues 205
of forms 215

Optional Parameters 41
Orientation 131, 146
Origin 175
Overlap 175
Overwrite 83

P
Page Background 133
Page Format 133
Page Margin 135
Page margin 135
Page numbers

as field in text documents 117
Page Properties 133
Page shadow 135
page templates 86
Pages 84
PageStyle 122
PaperFormat 84
PaperOrientation 84
PaperSize 84
ParaAdjust 95
ParaBackColor 95
ParaBottomMargin 95
Paragraph

com.sun.star.text 90
paragraph break 103
Paragraph Portions 90
Paragraph Properties 94
paragraph templates 86
ParagraphProperties

com.sun.star.style 95
Paragraphs 90
ParaLeftMargin 95
ParaLineSpacing 95
ParamArray 41
ParaRightMargin 95
ParaStyleName 95
ParaTabStops 95

218 StarOffice™ 6.0 Basic Programmer's Guide

ParaTopMargin 95
Passing Parameters 40
Password 79, 83, 181
Pause 167
Percent 177
Pie Diagrams 178
Polypolygon Shapes 160
PolyPolygonShape

com.sun.star.drawing 160
presentation templates 86
PresentationDocument

com.sun.star.presentation 167
previous 187
Print 59
PrintAnnotations 140
PrintCharts 140
PrintDownFirst 140
PrintDrawing 140
PrinterPaperTray 134
PrintFormulas 140
PrintGrid 140
PrintHeaders 140
PrintObjects 140
PrintZeroValues 140
Private 30
Procedures 38
Properties 68
PropertyState

com.sun.star.beans 97
protected space 103
Public 29

Q
Queries 181

R
ReadOnly 79
Rectangle Shapes 157
RectangleShape

com.sun.star.drawing 157
Regular expressions 104, 106
rehearseTimings 167
removeByIndex 74
removeByName 73
removeRange 128
removeTextContent 107

RepeatHeadline 109
Replace

in text documents 106
replaceByName 73
ResultSetConcurrency 187
ResultSetType 187
Resume 42
Right 49
RightBorder 135
RightBorderDistance 135
RightMargin 109, 113, 135
RightPageFooterContent 138
RightPageHeaderContent 138
RmDir 56
RotateAngle 131, 165
Rotating

of drawing elements 165
Rows

in spreadheets 123

S
Scope 27
SDBC 179
Search

in text documents 103
SearchBackwards 104
SearchCaseSensitive 104
SearchDescriptor

com.sun.star.util 103
SearchRegularExpression 104
SearchSimilarity 104
SearchSimilarityAdd 104
SearchSimilarityExchange 104
SearchSimilarityRelax 104
SearchSimilarityRemove 104
SearchStyles 104
SearchWords 104
Second 53
SecondaryXAxis 174
Select...Case 33
Services 69
Set of characters 17

ANSI 18
ASCII 17
defining for documents 79, 83
Unicode 18

Index 219

SetAttr 58
Shadow 156
Shadow Properties 156
ShadowColor 156
ShadowFormat 130, 136
ShadowTransparence 156
ShadowXDistance 156
ShadowYDistance 156
ShearAngle 165
Shearing

of drawing elements 165
Sheets 122
Shell 65
Similarity Search 105
Single 21
Single Color Fills 148
Sort 84
SplineOrder 178
SplineResolution 178
SplineType 177
SpreadsheetDocument

com.sun.star.sheet 121
SQL 179
Stacked 177
StackedBarsConnected 178
StarDesktop 75
start 167
Starting programs (external) 65
StartWithNavigator 167
StepHelp 175
StepMain 175
store 81
storeAsURL 83
String 19, 171
Strings

comparing 32
converting 46
declaring 17
editing 49
linking 31

StyleFamilies 86
StyleFamily

com.sun.star.style 86
Sub 40
Sub-title

of diagrams 170

Subtitle 171
supportsService 70
SuppressVersionColumns 181
syllabification 103
SymbolBitmapURL 177
SymbolSize 177
SymbolType 177

T
TableColumns

com.sun.star.table 123
TableFilter 181
TableRows

com.sun.star.table 123
TableTypeFilter 181
Templates 86
Text Fields 115
Text fields

of dialogues 206
of forms 217

Text Frames 112
TextAutoGrowHeight 155
TextAutoGrowWidth 155
TextBreak 175
TextCanOverlap 175
TextContent

com.sun.star.text 107
TextCursor 99
TextField

com.sun.star.text 115
TextFrame

com.sun.star.text 112
TextHorizontalAdjust 155
TextLeftDistance 155
TextLowerDistance 155
Textproperty

of drawing objects 154
TextRightDistance 155
TextRotation 171, 175
TextTable

com.sun.star.text 90, 108
TextUpperDistance 155
TextVerticalAdjust 155
TextWrap 107
Time 54
Title 170

220 StarOffice™ 6.0 Basic Programmer's Guide

Title
of diagrams 170

TopBorder 135
TopBorderDistance 135
TopMargin 109, 113, 135
Transparency 152, 162
Twips 194
Type Conversions 45

U
Unicode 18
Unpacked 83
UpdateCatalogName 182
updateRow 188
UpdateSchemaName 182
UpdateTableName 182
URL 181
URL Notation 76
UsePn 168
User 181

V
Variable declaration

explicit 16
global 29
implicit 16
local 28
private 30
public domain 29

Variable names 14
Variable types

Boolean values 24
data fields 25
Date and time details 24
Numbers 20
strings 19
Variant 16

Variant 16
Vertical 178
VertJustify 131
VertOrient 110, 113

W
Wait 65
Wall 173
Weekday 53

Width 109, 113, 123, 133, 146

X
XAxis 174
XAxisTitle 174
XComponentLoader

com.sun.star.frame 75
XEnumeration

com.sun.star.container 74
XEnumerationAccess

com.sun.star.container 74
XHelpGrid 174
XIndexAccess

com.sun.star.container 73
XIndexContainer

com.sun.star.container 74
XMainGrid 174
XML File Format 76
XMultiServiceFactory

com.sun.star.lang 71
XNameAccess

com.sun.star.container 72
XNameContainer

com.sun.star.container 73
XRangeMovement

com.sun.star.sheet 127
XStorable

com.sun.star.frame 81

Y
Year 53

Index 221

	Basic Programmer's Guide StarOffice 6.0
	Contents
	Introduction
	About StarOffice Basic
	Intended Users of StarOffice Basic
	Use of StarOffice Basic
	Structure of This Guide
	More Information

	The Language of StarOffice Basic
	An Overview of a StarOffice Basic Program
	Program Lines
	Comments
	Markers

	Working With Variables
	Implicit Variable Declaration
	Explicit Variable Declaration

	Strings
	From a Set of ASCII Characters to Unicode
	String Variables
	Specification of Explicit Strings

	Numbers
	Integer Variables
	Long Integer Variables
	Single Variables
	Double Variables
	Currency Variables
	Specification of Explicit Numbers

	True and False
	Boolean Variables

	Date and Time Details
	Date Variables

	Data Fields
	Simple Arrays
	Specified Value for Start Index
	Multi-Dimensional Data Fields
	Dynamic Changes in the Dimensions of Data Fields

	Scope and Life Span of Variables
	Local Variables
	Public Domain Variables
	Global Variables
	Private Variables

	Constants
	Operators
	Mathematical Operators
	Logical Operators
	Comparison Operators

	Branching
	If...Then...Else
	Select...Case

	Loops
	For...Next
	Do...Loop
	Programming Example: Sorting With Embedded Loops

	Procedures and Functions
	Procedures
	Functions
	Terminating Procedures and Functions Prematurely
	Passing Parameters
	Optional Parameters
	Error Handling
	The On Error Instruction
	The Resume Command
	Queries Regarding Error Information
	Tips for Structured Error Handling

	The Runtime Library of StarOffice Basic
	Conversion Functions
	Implicit and Explicit Type Conversions
	Checking the Content of Variables

	Strings
	Working with Sets of Characters
	Accessing Parts of a String
	Search and Replace
	Formatting Strings

	Date and Time
	Specification of Date and Time Details within the Program Code
	Extracting Date and Time Details
	Retrieving System Date and Time

	Files and directories
	Administering Files
	Writing and Reading Text Files

	Message and Input Boxes
	Displaying Messages
	Input Box For Querying Simple Strings

	Other functions
	Beep
	Shell
	Wait
	Environ

	Introduction to the StarOffice API
	Universal Network Objects (UNO)
	Properties and Methods
	Properties
	Methods

	Module, Services and Interfaces
	Tools for Working with UNO
	The supportsService Method
	Debug Properties
	API Reference

	An Overview of a Few Central Interfaces
	Creating Context-Dependent Objects
	Named Access to Subordinate Objects
	Index-Based Access to Subordinate Objects
	Iterative Access to Subordinate Objects

	Working with StarOffice Documents
	The StarDesktop
	Basic Information about Documents in StarOffice
	Creating, Opening and Importing Documents
	Document Objects

	Templates
	Details about various formatting options

	Text Documents
	The Structure of Text Documents
	Paragraphs and Paragraph Portions

	Editing Text Documents
	The TextCursor
	Searching for Text Portions
	Replacing Text Portions

	Text Documents: More than Just Text
	Tables
	Text Frames
	Text Fields
	Bookmarks

	Spreadsheet Documents
	The Structure of Table-Based Documents (Spreadsheets)
	Spreadsheets
	Rows and Columns
	Cells
	Formatting

	Editing Spreadsheet Documents Efficiently
	Cell Ranges
	Searching and Replacing Cell Contents

	The Structure of Drawings
	Pages
	Elementary Properties of Drawing Objects
	An Overview of Various Drawing Objects

	Editing Drawing Objects
	Grouping Objects
	Rotating and Shearing Drawing Objects
	Searching and Replacing

	Presentations
	Working With Presentations

	Diagrams (Charts)
	Using Diagrams in Spreadsheets
	The Structure of Diagrams
	The Individual Elements of a Diagram
	Example
	3D Diagrams
	Stacked Diagrams

	Diagram Types
	Line Diagrams
	Area Diagrams
	Bar Diagrams
	Pie Diagrams

	Database Access
	SQL: a Query Language
	Types of Database Access
	Data Sources
	Queries
	Links with Database Forms

	Database Access
	Iteration of Tables
	Type-Specific Methods for Retrieving Values
	The ResultSet Variants
	Methods for Navigation in ResultSets
	Modifying Data Records

	Dialogs
	Working With Dialogs
	Creating Dialogs
	Closing Dialogs
	Access to Individual Control Elements
	Working With the Model of Dialogs and Control Elements

	Properties
	Name and Title
	Position and Size
	Focus and Tabulator Sequence
	Multi-Page Dialogs

	Events
	Parameters
	Mouse Events
	Keyboard Events
	Focus Events
	Control Element-Specific Events

	Dialog Control Elements in Detail
	Buttons
	Option Buttons
	Checkboxes
	Text Fields
	List Boxes

	Forms
	Working with Forms
	Determining Object Forms
	The Three Aspects of a Control Element Form
	Accessing the Model of Control Element Forms
	Accessing the View of Control Element Forms
	Accessing the Shape Object of Control Element Forms

	Control Element Forms in Detail
	Buttons
	Option Buttons
	Checkboxes
	Text Fields
	List Boxes

	Database Forms
	Tables

	Appendix
	VBA Migrations Tips
	StarOffice 5.x Migration Tips

